Operating in the 2.4GHz unlicensed industrial, scientific, and medical (ISM) frequency band, Bluetooth technology supports multiple radio options that enable developers to build products meeting the unique connectivity requirements of their market.

Whether a product streams high-quality audio between a smartphone and speaker, transfers data between a tablet and medical device, or sends messages between thousands of nodes in a building automation solution, the Bluetooth Low Energy (LE) and Basic Rate/Enhanced Data Rate (BR/EDR) radios are designed to meet the unique needs of developers worldwide.

Bluetooth Low Energy (LE)

The Bluetooth Low Energy (LE) radio is designed for very low power operation. To enable reliable operation in the 2.4 GHz frequency band, it leverages a robust frequency-hopping spread spectrum approach that transmits data over 40 channels. The Bluetooth LE radio provides developers a tremendous amount of flexibility, including multiple PHY options that support data rates from 125 Kb/s to 2 Mb/s, multiple power levels, from 1mW to 100 mW, as well as multiple security options up to government grade.

Bluetooth LE also supports multiple network topologies, including point-to-point, broadcast and mesh networking.

Bluetooth Classic

The Bluetooth Classic radio, also referred to as Bluetooth Basic Rate/Enhanced Data Rate (BR/EDR), is designed for low power operation and also leverages a robust Adaptive Frequency Hopping approach, transmitting data over 79 channels. The Bluetooth BR/EDR radio includes multiple PHY options that support data rates from 1 Mb/s to 3 Mb/s, and supports multiple power levels, from 1mW to 100 mW, multiple security options, and a point-to-point network topology.


Bluetooth Low Energy (LE) Bluetooth Basic Rate/
Enhanced Data Rate (BR/EDR)
Frequency Band 2.4GHz ISM Band (2.402 – 2.480 GHz Utilized) 2.4GHz ISM Band (2.402 – 2.480 GHz Utilized)
Channels 40 channels with 2 MHz spacing
(3 advertising channels/37 data channels)
79 channels with 1 MHz spacing
Channel Usage Frequency-Hopping Spread Spectrum (FHSS) Frequency-Hopping Spread Spectrum (FHSS)
Modulation GFSK GFSK, π/4 DQPSK, 8DPSK
Power Consumption ~0.01x to 0.5x of reference
(depending on use case)
1 (reference value)
Data Rate LE 2M PHY: 2 Mb/s
LE 1M PHY: 1 Mb/s
LE Coded PHY (S=2): 500 Kb/s
LE Coded PHY (S=8): 125 Kb/s
EDR PHY (8DPSK): 3 Mb/s
EDR PHY (π/4 DQPSK): 2 Mb/s
BR PHY (GFSK): 1 Mb/s
Max Tx Power* Class 1: 100 mW (+20 dBm)
Class 1.5: 10 mW (+10 dbm)
Class 2: 2.5 mW (+4 dBm)
Class 3: 1 mW (0 dBm)
Class 1: 100 mW (+20 dBm)
Class 2: 2.5 mW (+4 dBm)
Class 3: 1 mW (0 dBm)
Network Topologies Point-to-Point (including piconet)
Broadcast
Mesh
Point-to-Point (including piconet)

* Devices shall not exceed the maximum allowed transmit power levels set by the regulatory bodies that have jurisdiction over the locales in which the device is to be sold or intended to operate. Implementers should be aware that the maximum transmit power level permitted under a given set of regulations might not be the same for all modulation modes.

Related Resources

Bluetooth AoD as the Technology of Choice for Indoor Positioning Systems (IPS)

This article discusses how GPS and Location Based Services became so ubiquitous that we…

Bluetooth Mesh and DALI - Under the Hood

In my previous article on Bluetooth Mesh and DALI – the Perfect Match, we…

Bluetooth Mesh and DALI – The Perfect Match

In May 2020, the Bluetooth Special Interest Group (SIG) and DiiA (Digital Illumination Interface…

Bluetooth Intelligent Body- Temperature Monitoring Solutions Help Schools Reopen Safely

With the arrival of autumn, many teachers and students are returning to school. During…

Car Access With TI Connection Monitor

Learn how the TI Connection Monitor is used to monitor Bluetooth Low Energy communications…

EUHA Congress 2020: Bluetooth LE Audio - A Milestone for Hearing Aid Users

With LE Audio, the Bluetooth® developer community has created a completely new audio architecture…

How Taiyo Yuden is Using Bluetooth Direction Finding to Support Reopening Solutions

According to the 2020 Bluetooth Market Update, location services is the fastest-growing Bluetooth® solution…

Wireless Connectivity Options for IoT Applications - Indoor Navigation

In this article, we continue our series on comparing various wireless connectivity options for…

The LC3 Difference

See how the new LC3 codec delivers higher quality audio at half the bit…

Previewing Bluetooth LE Audio

Bluetooth LE Audio will provide tools to extend the range of embedded applications for…

Reducing the Risk of COVID-19 Transmission

Learn how Philips partnered with Cassia Networks to help fight the spread of COVID-19…

Tested: How much does Bluetooth actually drain your phone battery?

Android Authority tests five smartphones to determine that Bluetooth Technology does not noticeably drain…

Extending an ENS to Support Wearable Devices

See how an ENS can better address population groups critical to managing a pandemic…

Chicago office building constructed with coronavirus-fighting features

When it opens later this summer, a $26 million Chicago office building will be…

POM Tracer Ensures Workplace Safety with Contact Tracing Solutions from Laird Connectivity

POM Tracer was looking to create an easy-to-implement product that would allow businesses and…

“Back to Work” Solutions - Explained

In this report, we share a detailed technical analysis of technologies available to enable…

Smartlock Provides Unparalleled Security

As more and more devices become smart devices with internet connectivity, the urgency to…

Bluetooth Deployment in Hospital Settings

Download this white paper to see how advancements in Bluetooth performance and reliability in…

Bluetooth Low Energy and the Automotive Transformation

The automotive industry has been experiencing a tremendous transformation. For many consumers, cars are…

How to Deploy BlueZ on a Raspberry Pi Board as a Bluetooth Mesh Provisioner

This step-by-step study guide will teach you: How to rebuild the kernel on a…

2020 Bluetooth Market Update

Supported by updated forecasts from ABI Research and insights from several other analyst firms, the Bluetooth Market Update highlights the latest Bluetooth trends and forecasts.

The Bluetooth LE Security Study Guide

Learn about fundamental security concepts, the security features of Bluetooth Low Energy, and gain some hands-on experience using those features in device code.

Bluetooth Location Services

See 8 use cases for enhancing building efficiencies and creating a better visitor experience, discover new data that supports the latest trends and forecasts, and find out what’s driving the rapid adoption of location services solutions.

How to Make Wearables Bluetooth Mesh Provisioners

Learn how to create applications for smartwatches and other platforms that can monitor and control nodes in a Bluetooth mesh network.

2019 Bluetooth Market Update

Supported by updated forecasts from ABI Research and insights from several other analyst firms, the Bluetooth Market Update highlights the latest Bluetooth trends and forecasts.

Overview – Bluetooth Technology

See how the global standard for simple, secure connection has expanded to meet the…

 Get Help