People are increasingly aware of, and concerned about, security—in particular, their privacy in both the physical and the digital world. The term “privacy” alludes to various types of issues, depending upon the context. One privacy issue concerns the possibility of being tracked “where you go” in the physical world without your awareness or consent. “Where you go” could mean the places you drive or the route you walk.

There is a capability within Bluetooth® technology concerned with safeguarding your privacy as it relates to any physical route you travel. This capability has been available since the release of the Bluetooth 4.0 core specification and the introduction of Bluetooth Smart. We’ve recently made some improvements to it in version 4.2.

Before looking at the Bluetooth Smart privacy feature, let’s examine the issue. To illustrate the risk of being tracked, we’ll first look at an example involving issues concerning wireless connectivity and privacy that potentially could happen today.

Imagine spending a day in various parts of your local town or city, visiting shops, having lunch with a friend and seeing a doctor before returning home. Your smartphone is in your pocket helping you navigate your day. If you’ve been using a hotspot to gain high-speed access to the web, chances are your phone has been broadcasting its MAC address to connect to those wireless networks. The MAC address is synonymous with your phone—and potentially “you”—and goes with you as you travel. It’s possible for malicious devices, hidden away in the environment, to receive these messages and log the date, time, location and MAC address in some remote web server. All that needs to be done now is linking the MAC address to your personal identity and that’s it…you’re being tracked.

Bluetooth® technology, on the other hand, is different.

Bluetooth Smart peripherals, such as activity trackers, announce their presence to other devices through a process known as advertising. Bluetooth Smart advertising packets also contain a MAC address to identify the device. To safeguard user privacy, manufacturers can make use of a Bluetooth Smart feature known as Bluetooth LE Privacy. This feature causes the MAC address within the advertising packets to be replaced with a random value that changes at timing intervals determined by the manufacturer. Any malicious device(s), placed at intervals along your travel route, would not be able to determine that the series of different, randomly generated MAC addresses received from your device actually relates to the same physical device. It actually looks like a series of different devices, thus, it will not be possible to track you using the advertised MAC address.

When Bluetooth LE Privacy is in use and advertising packets contain randomly generated MAC addresses disguising your device’s identity, the real MAC address remains hidden away. But what use is this if the outside world sees your device as having a different address?

The answer lies in the Bluetooth pairing process—Bluetooth® users are familiar with this process. Pairing indicates you trust the other device and want to interact with it. For example, if you pair your activity tracker with your phone, from that point on, the phone will have a special, trusted relationship with the tracker. What happens is much more involved but after pairing, the two devices will possess various encryption keys, one of which is concerned with privacy. This key is called the Identity Resolution Key (IRK). IRK allows the first device to translate those special, random MAC addresses which appear in the advertising packets from the second device, to the real MAC address in the second device. This capability is only in devices you have explicitly trusted.

Everything I’ve described about Bluetooth Smart privacy so far has been in place since the first release of Bluetooth Smart in version 4.0 of the core specification. So, what changed in 4.2?

In general, those random, private MAC addresses change according to a timer that the manufacturer implements in their product’s firmware. As such, they know exactly how often the MAC address will change. But there’s one special situation designed to make it possible for devices that have previously connected with each other to reconnect really quickly, where that timer is not used.

Devices may perform something known as “directed advertising.” In directed advertising, the advertising packets indicate both the MAC address of the device doing the advertising and the MAC address of the device being advertised to. This is like sending an invitation to a specific device with which you’ve had a previous relationship saying, “Hey, if you’re there, please reconnect to me!” The MAC address used by the advertising device is a random address if LE privacy is in use but for this situation, it’s a special type of private address called a “reconnection address.” Reconnection addresses differ from the private addresses used in other circumstances in that, they do change but not by a timer. Instead, a user’s actions, like switching the device on and off or the establishment of a new connection, triggers the change of address. In order to provide manufacturers more options, Bluetooth 4.2 now allows private reconnection addresses to also change to a new, random address using the same timer-based mechanism so manufacturers have complete control over how their product behaves with respect to privacy and private addresses.

Resolution of private addresses using the cryptographic IRK key back to the device’s real MAC address is now much faster and much more power efficient because it takes place in the Controller and not the Host in the Bluetooth® Smart architecture.

All in all, with release 4.2, we’ve made Bluetooth Smart Privacy both smarter and faster!

FEATURED INFOGRAPHIC

Build a Smarter Building with Blue

See new data on how building with blue can increase reliability, reduce costs, and enhance the ROI of smart building solutions.

SEE THE INFOGRAPHIC

New Auracast™ Devices Validate the Potential of This Latest Bluetooth Audio Innovation

Upon its release, bold claims were made about how Auracast™ broadcast audio would enhance…

Bluetooth Channel Sounding: How It Works and What It Means

Bluetooth® Channel Sounding is a new secure, fine-ranging capability that promises to enhance the…

UAIA Gets an Exclusive Look at the Latest Bluetooth Audio Innovation

Last week, the Universal Access in Aviation (UAIA) conference was held in Seattle, Washington…

Bluetooth Channel Sounding Makes Major Impacts Across the Market

Though only recently released, Bluetooth® Channel Sounding has already had a big impact on…

Bluetooth Channel Sounding: Key Solutions

Connection is one thing we all share. It keeps our world in motion and…

How Bluetooth is Powering the Electronic Shelf Label Revolution

Join Rigado and the Bluetooth Special Interest Group as we explore the future of…

Bluetooth in Automotive: Trends, Applications & Solutions

The number of Bluetooth devices and applications found in new vehicles continues to increase…

Next-Generation Bluetooth: Exploring Auracast

Explore how Auracast is set to transform audio experiences and connectivity across various devices.…

Bluetooth audio is changing. Here’s what you need to know!

Bluetooth LE Audio brings in a suite of changes including a new generic audio…

Telink Semiconductor Takes the Lead in Supporting Bluetooth® Channel Sounding

In the ever-evolving age of advancing technology, precise positioning technology is serving as the…

Crafting Innovative Auracast™ Devices from Concept to Compatibility

If you haven’t heard of AuracastTM broadcast audio yet, it’s time to fully embrace it. This…

Receiver Blocking Resilience Test Suite

This Test Suite tests the receiver blocking resilience of a Bluetooth implementation. It is…

Bluetooth® Channel Sounding Resources

From smart door locks and access systems to asset tracking and management, Bluetooth® Channel…

The Perfect Fit for an Auracast™ Retrofit

Learn about Auracast™ broadcast audio retrofit solutions and opportunities.

Bluetooth® Core Specification v6.0 Feature Overview

Bluetooth® Core Specification version 6.0 includes several feature enhancements. This paper provides an overview…

Bluetooth® Channel Sounding Communications Guide

This communications guide includes Bluetooth® Channel Sounding key messages and positioning details. This document…

2024 Bluetooth® Market Update

The 2024 Bluetooth® Market Update examines the direction and adoption of Bluetooth technology.

Auracast Broadcast Audio Retrofit Solutions and Opportunities

This report by ABI Research delves into the opportunity for public spaces to offer…

Revolutionizing Online Order Fulfillment: Managing Mis Shipments

Discover how Wiliot, an ambient Internet of Things (IoT) pioneer, is revolutionizing the online…

What's the Range of Auracast Broadcast Audio?

Get the answer to the question everyone’s asking. Find out what the coverage area…

Can You Add Auracast Support to Existing Devices?

Are you waiting for native Auracast™ support? You might not have to. Find out…

Retail Pharmacy

A leading retailer is collaborating with Wiliot, an ambient Internet of Things (IoT) pioneer,…

Introducing Bluetooth® LE Audio

Now available for free digital download, get your copy of this in-depth, technical overview of the LE Audio specifications.

Bluetooth® Technology for Linux Developers

Learn how to use the interprocess communication system D-Bus and the BlueZ APIs to create Bluetooth applications for Linux computers.

Designing and Developing Bluetooth® Internet Gateways

Learn about Bluetooth® internet gateways, how to make them secure and scalable, and design and implement your own...

The Bluetooth LE Security Study Guide

Learn about fundamental security concepts, the security features of Bluetooth Low Energy, and gain some hands-on experience using those features in device code.

 Get Help