In Bluetooth Pairing Part 1: Pairing Feature Exchange, we talked about the pairing feature exchange in Bluetooth® with low energy. The pairing feature exchange is used to make both devices, initiator and responder, understand each other’s pairing features.

The pairing features that can be enabled are:

  • OOB Data Flag bit
  • MITM—Man-In-The-Middle bit
  • SC—LE secure connection indicator bit
  • IO Cap—IO Capabilities

*For an introduction to these features, please refer to Bluetooth Pairing Part 1: Pairing Feature Exchange.

After this exchange, both devices can select which key generation method is used in subsequent phases. Here is the list of key generation methods for Bluetooth LE legacy pairing and Bluetooth LE Secure Connection.

Bluetooth LE Legacy Pairing:

  • Just Works
  • Passkey
  • Out-of-Band(OOB)

Bluetooth LE Secure Connection includes the three methods above and adds one new one:

  • Numeric Comparison

Workflow

Here is the workflow on how a device decides which key generation method to use.

Step 1: Check SC bit in pairing feature exchange frame. If the SC bit is equal to 1 on both sides, an LE secure connection is used, go to step 2. Otherwise, it is LE legacy pairing, and go to step 3.

Step 2: When it is LE secure connection, below is the matrix that initiator and responder will follow.

  • “Use OOB” means Out-of-Band is selected.
  • “Check MITM” means ignore “OOB Data Flag” and check MITM flag, “Man-In-The-Middle” flag.
  • “Use IO Capabilities,” go to step 4 to select the key generation method depending on IO Capabilities of both devices.

Step 3: When it is LE legacy pairing, below is the matrix that initiator and responder will follow.

  • “Use OOB” means Out-of-Band is selected.
  • “Check MITM” means ignore “OOB Data Flag” and check the MITM flag, “Man-In-The-Middle” flag.
  • “Use IO Capabilities”, go to step 4 to select the key generation method depending on IO Capabilities of both device.

Step 4: Below is a mapping of the IO Capabilities to Key Generation Method. With this table, both devices, initiator and responder, will find an appropriate method for connecting depending on their pairing features.

After this, the initiator and responder understand the method that will be used in the key generation phase. In part 3, I will introduce how to generate the corresponding key in Bluetooth® LE legacy pairing by using the Passkey method.

FEATURED DOWNLOAD

Bluetooth 5: Go Faster, Go Further

Download this comprehensive overview to discover how Bluetooth 5 significantly increases the range, speed, and broadcast messaging capacity of Bluetooth applications, making use cases in smart home automation, enterprise, and industrial markets a reality.

INSTANT DOWNLOAD

Bluetooth Channel Sounding: How It Works and What It Means

Bluetooth® Channel Sounding is a new secure, fine-ranging capability that promises to enhance the…

Receiver Blocking Resilience Test Suite

This Test Suite tests the receiver blocking resilience of a Bluetooth implementation. It is…

Now Available: New Version of the Bluetooth Core SpecificationBluetoothコア仕様の新バージョンがリリース

Thanks to the dedication and hard work of the Bluetooth community, Bluetooth® technology is…

Channel Sounding: Technical Overview (Pt 2)

In Part 1 we introduced the new Bluetooth distance measurement innovation known as Channel…

Unlocking Healthcare Potential: SPP and Bluetooth® LE for Medical Devices

The Serial Port Profile (SPP) has long been a well-known standard for wireless serial…

The Bluetooth Roadmap: Bluetooth Specifications in ProgressBluetoothのロードマップ:策定中のBluetooth仕様

Though not commonly known among many consumers, Bluetooth® technology is constantly and consistently advancing to…

A First Look at Bluetooth® Channel SoundingBluetoothチャネルサウンディングの紹介

Over the last 25 years, we have seen Bluetooth® technology advance from a point-to-point…

Coffee → Max Throughput → More Bluetooth® Testing

Recently, while sipping on our americanos and lattes, conversation moved to our series of…

Bluetooth Mesh 1.1 Performance

In this blog, we explore different performance capabilities of the Bluetooth Mesh 1.1 network…

Bluetooth® Channel Sounding: A Technical Overview

This paper provides a detailed technical overview of Bluetooth® Channel Sounding, a secure fine ranging…

The Bluetooth® Mesh Primer

An introduction and explanation of important Bluetooth® Mesh concepts.

Enabling the Digital Transformation of Industrial IoT with Bluetooth®

The Industrial IoT is a digital transformation process for enterprises offering them compelling abilities…

Bluetooth Low Energy Fundamentals

The Bluetooth Low Energy (LE) Fundamentals Course is designed to give you the knowledge…

The Latest in HADM with Bluetooth LE

HADM, or high accuracy distance measurement using Bluetooth does exactly what it says –…

Bluetooth® Technology for Linux Developers

Learn how to use the interprocess communication system D-Bus and the BlueZ APIs to create Bluetooth applications for Linux computers.

Designing and Developing Bluetooth® Internet Gateways

Learn about Bluetooth® internet gateways, how to make them secure and scalable, and design and implement your own...

The Bluetooth LE Security Study Guide

Learn about fundamental security concepts, the security features of Bluetooth Low Energy, and gain some hands-on experience using those features in device code.

 Get Help