In Bluetooth Pairing Part 1: Pairing Feature Exchange, we talked about the pairing feature exchange in Bluetooth® with low energy. The pairing feature exchange is used to make both devices, initiator and responder, understand each other’s pairing features.

The pairing features that can be enabled are:

  • OOB Data Flag bit
  • MITM—Man-In-The-Middle bit
  • SC—LE secure connection indicator bit
  • IO Cap—IO Capabilities

*For an introduction to these features, please refer to Bluetooth Pairing Part 1: Pairing Feature Exchange.

After this exchange, both devices can select which key generation method is used in subsequent phases. Here is the list of key generation methods for Bluetooth LE legacy pairing and Bluetooth LE Secure Connection.

Bluetooth LE Legacy Pairing:

  • Just Works
  • Passkey
  • Out-of-Band(OOB)

Bluetooth LE Secure Connection includes the three methods above and adds one new one:

  • Numeric Comparison

Workflow

Here is the workflow on how a device decides which key generation method to use.

Step 1: Check SC bit in pairing feature exchange frame. If the SC bit is equal to 1 on both sides, an LE secure connection is used, go to step 2. Otherwise, it is LE legacy pairing, and go to step 3.

Step 2: When it is LE secure connection, below is the matrix that initiator and responder will follow.

  • “Use OOB” means Out-of-Band is selected.
  • “Check MITM” means ignore “OOB Data Flag” and check MITM flag, “Man-In-The-Middle” flag.
  • “Use IO Capabilities,” go to step 4 to select the key generation method depending on IO Capabilities of both devices.

Step 3: When it is LE legacy pairing, below is the matrix that initiator and responder will follow.

  • “Use OOB” means Out-of-Band is selected.
  • “Check MITM” means ignore “OOB Data Flag” and check the MITM flag, “Man-In-The-Middle” flag.
  • “Use IO Capabilities”, go to step 4 to select the key generation method depending on IO Capabilities of both device.

Step 4: Below is a mapping of the IO Capabilities to Key Generation Method. With this table, both devices, initiator and responder, will find an appropriate method for connecting depending on their pairing features.

After this, the initiator and responder understand the method that will be used in the key generation phase. In part 3, I will introduce how to generate the corresponding key in Bluetooth® LE legacy pairing by using the Passkey method.

FEATURED DOWNLOAD

Bluetooth 5: Go Faster, Go Further

Download this comprehensive overview to discover how Bluetooth 5 significantly increases the range, speed, and broadcast messaging capacity of Bluetooth applications, making use cases in smart home automation, enterprise, and industrial markets a reality.

INSTANT DOWNLOAD

Robust Indoor Distance Estimation Algorithms for Bluetooth® Channel Sounding

Bluetooth Channel Sounding is a powerful feature setting a clear and solid foundation for…

What’s New with Bluetooth® Technology: Channel Sounding, Upcoming Features, and Key Technology Trends

With over 5 billion devices shipping each year, Bluetooth technology is the most widely…

Bluetooth® Core 6.0: What's New In The Latest Bluetooth Release?

Bluetooth technology is constantly growing, not only enhancing existing applications but also enabling entirely…

Bluetooth PAwR in a Large-Scale Test Network

In the ever-evolving, dynamic landscape of Bluetooth-connected smart devices, efficient interconnection and reliable communication…

Bluetooth Channel Sounding: How It Works and What It MeansBluetoothチャネルサウンディング:その仕組みと意義

Bluetooth® Channel Sounding is a new secure, fine-ranging capability that promises to enhance the…

Receiver Blocking Resilience Test Suite

This Test Suite tests the receiver blocking resilience of a Bluetooth implementation. It is…

Now Available: New Version of the Bluetooth® Core SpecificationBluetoothコア仕様の新バージョンがリリース

Thanks to the dedication and hard work of the Bluetooth community, Bluetooth® technology is…

Channel Sounding: Technical Overview (Pt 2)

In Part 1 we introduced the new Bluetooth distance measurement innovation known as Channel…

Unlocking Healthcare Potential: SPP and Bluetooth® LE for Medical Devices

The Serial Port Profile (SPP) has long been a well-known standard for wireless serial…

The Bluetooth Roadmap: Bluetooth Specifications in ProgressBluetoothのロードマップ:策定中のBluetooth仕様

Though not commonly known among many consumers, Bluetooth® technology is constantly and consistently advancing to…

Bluetooth® Channel Sounding: A Technical Overview

This paper provides a detailed technical overview of Bluetooth® Channel Sounding, a secure fine ranging…

The Bluetooth® Mesh Primer

An introduction and explanation of important Bluetooth® Mesh concepts.

Enabling the Digital Transformation of Industrial IoT with Bluetooth®

The Industrial IoT is a digital transformation process for enterprises offering them compelling abilities…

Bluetooth® Technology for Linux Developers

Learn how to use the interprocess communication system D-Bus and the BlueZ APIs to create Bluetooth applications for Linux computers.

Designing and Developing Bluetooth® Internet Gateways

Learn about Bluetooth® internet gateways, how to make them secure and scalable, and design and implement your own...

The Bluetooth LE Security Study Guide

Learn about fundamental security concepts, the security features of Bluetooth Low Energy, and gain some hands-on experience using those features in device code.

 Get Help