Many of you may know that radio spectrum is a valuable commodity and that globally there are clear rules (and often licenses that cost money) in order to use particular frequencies and bands. The radio frequencies in each country are “owned” by that country, and each country has the ability to permit or license specific use in certain frequencies. Fortunately, some bands are allocated in the same way with similar rules across many countries – these are called harmonized bands.

Bluetooth® operates in a harmonized frequency band that is one of the ISM bands (ISM=Industrial, Scientific and Medical) along with other technologies that also use the band (for example Wi-Fi or microwave ovens). Products are allowed to operate without a license using the ISM bands, but must adhere to a set of rules that help everyone benefit from the value provided by the spectrum. These rules define such things as maximum transmit power levels and how much spill over there can be in adjacent frequency bands. This means technologies like Bluetooth have what are called “guard bands”—free spectrum at the ends of a frequency band—in order to ensure there are no transmissions that spill over into the next band.

In the US, the FCC allocated the frequency band “above” the ISM band Bluetooth uses to a company called Globalstar specifically for the operation of a satellite communications service. As I understand it, Globalstar has not been as successful as they hoped in operating that service and have been exploring other ways to use the spectrum (although it was allocated for a specific use).

Globalstar proposed a new service called TLPS (terrestrial low power service) which would use a portion of their allocated band and a portion of the ISM band spectrum. In order to do this they have been asking the FCC to allow them to use this “satellite spectrum” for a terrestrial service AND for a change in the rules for the ISM band (just for them) so that only they can use a portion of it in an overlapping/spill-over way.

This seems wrong on many levels. Why should the FCC allow one company to use the ISM band with preferential rules only applying to them? If they could not operate a successful satellite service then they have little track record to show they would be successful at operating a different commercial service. Shouldn’t the FCC take the frequency back and allocate it to someone who could operate the service successfully?

In addition, the Bluetooth SIG (and others) has maintained this kind of overlapping use would cause interference and a detrimental impact on the other users of the ISM band, particularly the users of the hundreds of millions of Bluetooth devices sold in the US.

Recently, the FCC requested the Bluetooth SIG and other interested groups attend a technical demonstration session with Globalstar at the FCC Technology Center and attempt to highlight, in some way, if the interference concerns were valid. From what we saw, they are.

The demonstration sessions were held in a rather small space that meant we could not conduct some of the demonstration scenarios we had prepared. Nevertheless, our demonstrations with Bluetooth Hearing Aids and Bluetooth Smart Lighting both showed a clear impact from TLPS. The Bluetooth Hearing Aids showed packet loss increasing from a “correctable level” around 10% to nearly double at 20%—for end users this could mean broken up, or significantly lower audio quality. The Bluetooth® Smart Lighting demonstration used multiple Bluetooth lights spread around the room and when TLPS was present clearly showed a fourfold increase in the number of times certain lights did not receive a command to turn on or off or change color. Two clear demonstrations of the interference caused by TLPS.

Due to these results, we were beyond surprised this week to see claims by Globalstar that TLPS caused no interference with Bluetooth—especially when they were present for our demonstrations and saw the results. There is clear interference with products and services in the ISM band from the proposed TLPS service.

The Bluetooth SIG has cooperated with the FCC throughout this lengthy process. You can see our filings with the FCC here, including our recent filing summarizing our findings from the demonstrations. We believe we have now shown there is a concerning level of interference caused by this overlapping TLPS service.

Moreover, I believe that it is wrong and a dangerous precedent to allow one company to have different rules for using the ISM band. For the sake of the most beneficial use of the ISM band in general and the millions of U.S. Bluetooth users in particular, I do hope the FCC denies the Globalstar TLPS proposal.

Is Globalstar Telling the Whole Story?

Read the FCC Filings

GN Looks at Bluetooth® Trends We Can Expect to See Next Year

The GN Group – a Danish organization that drives the design and manufacture of…

Silicon Labs Provides Insight Into What We Can Expect From Bluetooth® Technology Next Year

Silicon Labs is a major contributor to the wireless connectivity space for the IoT.…

Qualcomm Highlights Past Bluetooth® Successes and Shares Insight Into What’s Ahead for Bluetooth Technology in 2025

An innovator of intelligent computing, Qualcomm Technologies, Inc. strives to develop comprehensive solutions that…

A New FCC Requirement Will Pave the Way for Inclusive Audio Experiences for All

Last month, the Federal Communications Commission (FCC) announced new rules establishing that 100 percent…

Unlock Accurate Ranging With Our Bluetooth® Wireless MCUs for Channel Sounding

See how our family of devices enable improved ranging technology for Channel Sounding, introduced…

Auracast™ Broadcast Audio for Developers: Best Practices for Developing Transmitters, Receivers, and Broadcast Assistants for Public Locations

Auracast broadcast audio technology will revolutionize how we experience audio. This interactive session will…

Robust Indoor Distance Estimation Algorithms for Bluetooth® Channel Sounding

Bluetooth Channel Sounding is a powerful feature setting a clear and solid foundation for…

What’s New with Bluetooth® Technology: Channel Sounding, Upcoming Features, and Key Technology Trends

With over 5 billion devices shipping each year, Bluetooth technology is the most widely…

Bluetooth® Core 6.0: What's New In The Latest Bluetooth Release?

Bluetooth technology is constantly growing, not only enhancing existing applications but also enabling entirely…

Taking Find My Applications to the Next Level with Telink

Discover how Telink’s solutions enhance Find My applications with cross-platform compatibility and Bluetooth Channel…

Bluetooth Channel Sounding Brings Crucial Ranging to New Bluetooth Devices

The Bluetooth SIG has relentlessly pushed forward the capabilities and feature sets of the…

Receiver Blocking Resilience Test Suite

This Test Suite tests the receiver blocking resilience of a Bluetooth implementation. It is…

The Perfect Fit for an Auracast™ Retrofit

Learn about Auracast™ broadcast audio retrofit solutions and opportunities.

Bluetooth® Core Specification v6.0 Feature Overview

Bluetooth® Core Specification version 6.0 includes several feature enhancements. This paper provides an overview…

Bluetooth® Channel Sounding Communications Guide

This communications guide includes Bluetooth® Channel Sounding key messages and positioning details. This document…

2024 Bluetooth® Market Update

The 2024 Bluetooth® Market Update examines the direction and adoption of Bluetooth technology.

Auracast Broadcast Audio Retrofit Solutions and Opportunities

This report by ABI Research delves into the opportunity for public spaces to offer…

Revolutionizing Online Order Fulfillment: Managing Mis Shipments

Discover how Wiliot, an ambient Internet of Things (IoT) pioneer, is revolutionizing the online…

What's the Range of Auracast Broadcast Audio?

Get the answer to the question everyone’s asking. Find out what the coverage area…

Can You Add Auracast Support to Existing Devices?

Are you waiting for native Auracast™ support? You might not have to. Find out…

Retail Pharmacy

A leading retailer is collaborating with Wiliot, an ambient Internet of Things (IoT) pioneer,…

Introducing Bluetooth® LE Audio

Now available for free digital download, get your copy of this in-depth, technical overview of the LE Audio specifications.

Bluetooth® Technology for Linux Developers

Learn how to use the interprocess communication system D-Bus and the BlueZ APIs to create Bluetooth applications for Linux computers.

Designing and Developing Bluetooth® Internet Gateways

Learn about Bluetooth® internet gateways, how to make them secure and scalable, and design and implement your own...

The Bluetooth LE Security Study Guide

Learn about fundamental security concepts, the security features of Bluetooth Low Energy, and gain some hands-on experience using those features in device code.

 Get Help