

Date / Year-Month-Day Approved Revision Document No

BLUETOOTH DOCUMENT 2005-11-24 Approved V10r00 HID Lite_WP
Prepared e-mail address N.B.
HID WG hid-main@bluetooth.org Confidential

HID Lite:

Simplifying the Bluetooth® Human Interface Device
Profile to Add Bluetooth Keyboard and Mouse Input

Capability to Resource-Limited Devices

White Paper

Abstract: This white paper describes the recommended approach to supporting keyboards and mice on
devices with limited memory and processing power resources.

2005-11-24 HID Lite White Paper

Page 2 of 25

Special Interest Group (SIG)
The following Promoter Companies are representatives in the Bluetooth Special Interest
Group:

Agere Systems Inc.
Ericsson Technology Licensing AB
IBM Corporation
Intel Corporation
Microsoft Corporation
Motorola Inc.
Nokia Corporation
Toshiba Corporation

Revision History
Revision Date Description
D05r00 May 12, 2005 Initial Draft
D05r01 June 9, 2005 2nd Draft
D05r02 June 14, 2005 Edits from Peter Hauser, Microsoft
D05r03 July 14, 2004 Removed recommendation to use Class of Device to identify boot-

mode capable devices. Added more detail on device discovery,
connection process, use of SDP.

D05r04 July 27, 2005 - Added example SDP transactions
- Removed HIDBootDevice information from main text and

placed in footnote.
D05r05 August 22, 2005 - Updated link to Assigned Numbers document for Peripheral

Minor Class of Device fields
- Incorporated comments from Logitech and Microsoft

D05r06 September 22,
2005

- Submitted to BARB

D05r07 October 27, 2005 - Incorporated BARB feedback
- Submit for 1.o approval.

D10r00 November 1, 2005 - Approved by BARB
V10r00 November 24, 2005 - BoD review period for objections expired

Contributors
Name Company
Robert Hulvey (document owner) Broadcom
Ken Steck CSR
Pierre Chênes Logitech
Rene Sommer Logitech
Chris Dreher Microsoft
Peter Hauser Microsoft
Kanji Kerai Nokia

2005-11-24 HID Lite White Paper

Page 3 of 25

Disclaimer and Copyright Notice

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER,
INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT,
FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE
ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Any liability,
including liability for infringement of any proprietary rights, relating to use of
information in this document is disclaimed. No license, express or implied, by estoppel
or otherwise, to any intellectual property rights are granted herein.
This document is for comment only and is subject to change without notice.
Copyright © 2001, 2002, 2003, 2004, 2005. Bluetooth® SIG, Inc. *Other
third-party brands and names are the property of their respective owners.

2005-11-24 HID Lite White Paper

Page 4 of 25

Contents
1 Introduction .. 5
2 Background ... 6
3 Device Discovery .. 8
3.1 Class of Device and SDP Attribute Recommendations...8
3.2 Minimal SDP Implementation ...11
3.2.1 Establishing the Baseband connection ..12
3.2.2 Opening the L2CAP Channel ...12
3.2.3 Configuration of the L2CAP Channel ..12
3.2.4 Sending the SDP_ServiceSearchAttributeRequest ..13
3.2.5 Processing the SDP_ServiceSearchAttributeResponse ...13
3.2.6 Closing the L2CAP Channel ...16
4 Security... 17
5 Connection Establishment ... 18
6 Boot Protocol... 19
6.1 Keyboard Boot Protocol Input Report ...19
6.2 Keyboard Boot Protocol Output Report ..21
6.3 Mouse Boot Protocol Input Report ...21
Appendix A: Pending Errata Impacting this Whitepaper 22
Appendix B: Use of Class of Device to Identify Boot-Mode Capable Devices23
Appendix C: SPP Compliant Input Device Implementations 24

2005-11-24 HID Lite White Paper

Page 5 of 25

1 Introduction

The number of small, portable devices such as personal digital assistants (PDAs) and
cell-phones being shipped each year is growing at a staggering pace.1 The decreasing
size and increasing capabilities of these devices is creating a demand for Human
Interface Devices (HIDs) which facilitate user interaction with these devices. As small
devices discourage the use of connectors, wireless HIDs are particularly attractive.
Given the widespread adoption of Bluetooth in PDAs, cell-phones, and other such small
devices, Bluetooth is an excellent candidate for the wireless protocol to connect wireless
HIDs to such devices.

This whitepaper explains how a subset of the Bluetooth HID profile can be employed to
greatly simplify the implementation of the Bluetooth HID profile on resource-limited
devices.

1 From a recent (as of this writing) Forbes article in April 2005: “This year will see the sale of 660 million
phones worldwide, compared with a mere 195 million PCs, according to Merrill Lynch and IDC,
respectively.”

2005-11-24 HID Lite White Paper

Page 6 of 25

2 Background

The Bluetooth HID Profile borrows heavily from and incorporates much of the USB HID
Class specification. As a result this foundation, the Bluetooth HID Profile enables a
wide variety of human interface devices to be wirelessly connected to host devices in a
way which allows the re-use of many software drivers already developed for USB HID
devices.

Most HID devices on the market today, whether they employ USB or Bluetooth to
connect to the host, were designed first and foremost for use with personal computers
(PCs). However, small devices such as cell-phones and PDAs are not often designed to
be USB hosts, and hence USB HID software drivers were seldom developed for these
devices. Furthermore, many of these devices have limited processing and memory
resources. Fortunately, the designers of the USB HID Class specification provided a
means to scale down the HID protocol in order to facilitate implementation on such
platforms, and the Bluetooth HID Profile specification defines how this can be
implemented on Bluetooth host platforms.

The scaled down HID protocol was primarily created to enable BIOS (Basic Input
Output Subsystem) firmware in PCs to support USB HID devices with a minimal
amount of resources, and to thereby hasten the adoption of USB and USB HID devices
in PCs. Most PCs can support at least a keyboard, even while the system is booting and
before an operating system is loaded. The PC’s BIOS firmware generally supports input
from a keyboard as the PC boots up and until the operating system (OS) takes over.2
The BIOS firmware is typically kept small, and hence only limited support for HID
devices is provided. It is for this reason the scaled down HID protocol was called the
“boot protocol”.

The complexity of the full implementation of the HID protocol stems largely from the
fact that it was designed not only to support those devices which were known when the
specification was developed, but also to support future devices without having to change
the protocol specification. This adaptability is in large part due to the use of “report
descriptors” which a host system may solicit from a device after the device is detected.
As the name suggests, the report descriptor enables the HID to describe to the host what
types of information the HID is capable of reporting to the host. The host software
drivers typically comprise a component known as a “parser” which reads and interprets
the report descriptor to determine what types of reports to expect from a device. While
this mechanism makes the HID protocol highly “future proof”, it is also one of the most
resource-intensive aspects of a full HID protocol implementation in terms of code size,
memory, processing power, and in terms of human resources required for development

2 Some older operating systems actually continue to use the BIOS firmware to interface to HID devices
such as the keyboard and mouse, even after the OS has fully loaded.

2005-11-24 HID Lite White Paper

Page 7 of 25

and testing. It is primarily this parser component which the “boot protocol” originally
defined by the USB HID specification aims to eliminate.

As the most widely used HIDs are by far the familiar keyboard and mouse, the boot
protocol was designed to support only these 2 devices. The report formats for these
devices are fixed in the boot protocol definition and defined in the USB HID spec,
essentially allowing the report descriptors for these devices to be implicit, and allowing
the complex parser software element to be eliminated.

The name “boot protocol” is also somewhat misleading. While “boot protocol” is
descriptive of its usage in PC BIOSes, what may not be obvious to many readers of the
USB HID specification is that the boot protocol is also suitable for implementation in
resource-limited devices. Hence, one might consider “boot protocol” to be a “lite”
version of the HID protocol, or “HID Lite”. In the Bluetooth HID Profile, further
simplifications are allowed to facilitate the implementation of non-HID portions of the
Bluetooth software stack. In this document, the term “HID Lite” will be used to describe
the application of the boot protocol to simplify the implementation of the Bluetooth HID
profile on resource-limited host devices.

2005-11-24 HID Lite White Paper

Page 8 of 25

3 Device Discovery

This section will describe the procedures recommended to be used by a HID Lite host
for discovering Bluetooth devices which support HID Lite. The general steps required
are:

1. Host performs an Inquiry Operation using GIAC and LIAC.
2. For each device found:

a. If CoD indicates device is a HID device, then proceed to step (e), otherwise
continue to step (b)

b. Host establishes a baseband connection to each device
c. Host establishes an L2CAP connection on SDP PSM
d. Host SDP client requests HIDDeviceSubclass
e. Host determines that the device supports HID Lite if either:bit 7 or bit 6 of

HIDDeviceSubclass (or least significant byte of CoD) is set indicating
keyboard and/or pointing device respectively.

The Service Discovery Profile (SDP) is generally used by one Bluetooth device to
discover the services provided by another Bluetooth device. The SDP client
functionality is generally required on the host device, while the SDP server functionality
is typically found on the HID.

Appendix B contains further information regarding the usage of SDP.

NOTE: In environments with many devices in the proximity, this process could take a
while (paging + connection establishment overhead).

3.1 Class of Device and SDP Attribute Recommendations

It is recommended that devices which function primarily as a keyboard, pointing device,
or hybrid keyboard/pointing device, report a Class of Device (CoD) field using the
Peripheral Major CoD value in the Frequency Hopping Synchronization (FHS) packet
sent as a response during the Inquiry process. This will ensure that host stack software
which presents a graphical user interface to the user will display an appropriate iconized
representation of the device when it is discovered or when it is displayed in a list of
paired devices.

For devices for which the primary function does not fall under the Bluetooth HID
profile, but which may implement the Bluetooth HID profile as a sub-function, other
CoD values may be used as appropriate. For example, a laptop should use the CoD of a
laptop computer.

2005-11-24 HID Lite White Paper

Page 9 of 25

Regardless of the CoD field used for a device, all devices implementing the Bluetooth
HID Profile are required to support the HIDDeviceSubclass SDP attribute. This
attribute can be used to identify all currently defined boot-mode capable devices.3 The
HIDDeviceSubclass attributes is described in the Bluetooth HID Profile version 1.0
document as follows:

7.11.2 HIDDeviceSubclass
Attribute Name Attribute ID Attribute Value Type

HIDDeviceSubclass 0x0202 8-bit unsigned integer

Description

The HIDDeviceSubclass attribute is an 8-bit integer, which identifies the type of
device (keyboard, mouse, joystick, gamepad, remote control, sensing device, etc.).
Keyboards and mice are required to support boot mode operation. In boot mode,
a device presents a fixed report, thus negating the requirement for a HID parser.

The Attribute value is identical to the low-order 8 bits of the Class of
Device/Service (CoD) field in the FHS packet, where bits 7-2 contain the 6 bit
Minor Device Class value (defined in Section 1.2 of the Bluetooth Assigned
Numbers document [8]) and bits 1-0 are set to zero. See Section 7.2.1 for more
information about boot devices.

HIDDeviceSubclass can differ from the Class of Device field of an FHS packet if
the device is a composite device that implements multiple Bluetooth profiles.

The format and contents of the CoD field, which applies in part to the
HIDDeviceSubclass SDP attribute, is defined in the Bluetooth Assigned Numbers
document accessible at the following URL:

https://www.bluetooth.org/foundry/assignnumb/document/baseband

The permissible values for the Major Device Class field are given in the section at the
following URL and copied below:

https://www.bluetooth.org/foundry/assignnumb/document/baseband#pgfId-133823

3 The Bluetooth HID Profile version 1.0 also provides the HIDBootDevice attribute in order to
accommodate any additional boot-mode reports which may be defined in future revisions of the Bluetooth
HID Profile or USB HID specifications. Since boot-mode reports are defined only for keyboards and
pointing devices as of this writing, HIDDeviceSubclass provides sufficient and more detailed information
to identify boot-mode capable devices, and hence HIDBootDevice is not required. Please refer to the the
Bluetooth HID Profile specification for more information on the HIDBootDevice attribute.

2005-11-24 HID Lite White Paper

https://www.bluetooth.org/foundry/assignnumb/document/baseband

Page 10 of 25

Bluetooth keyboards and mice should always use the “Peripheral” Major Device Class
code shown here:

12 11 10 9 8 Major Device Class

0 0 1 0 1 Peripheral (mouse, joystick, keyboards,)

The permissible values for the Minor Device Class field for the Peripheral Major Device
Class are given at the following URL and copied below:

https://www.bluetooth.org/foundry/assignnumb/document/baseband#pgfId-133895

1.2.8 Minor Device Class field - Peripheral Major Class

The Minor Device Class field top bits specify whether the peripheral device is a
pointing device, keyboard, combination keyboard/pointing, or other.

7 6
Minor Device Class
bit no of CoD

0 0 Not Keyboard / Not Pointing Device

0 1 Keyboard

1 0 Pointing device

1 1 Combo keyboard/pointing device

Table 1.9: The Peripheral Major Class keyboard/pointing device field

2005-11-24 HID Lite White Paper

Page 11 of 25

Bits 6 and 7 independently specify mouse, keyboard or combo mouse/keyboard
devices. These may both be set to indicate a hybrid keyboard/pointing device,
and may also be combined with the lower bits to identify a multifunctional
device.

5 4 3 2
Minor Device Class
bit no of CoD

0 0 0 0 Uncategorized device

0 0 0 1 Joystick

0 0 1 0 Gamepad

0 0 1 1 Remote control

0 1 0 0 Sensing device

0 1 0 1 Digitizer tablet

0 1 1 0 Card Reader (e.g. SIM Card Reader)
X X X X All other values reserved

Table 1.10: Reserved sub-field for the device type

3.2 Minimal SDP Implementation
This section describes how to implement the SDP client on the HID Lite host to
minimize the code and memory resources required. The only SDP operation required is
to request the HIDDeviceSubclass attribute value from the HID device. This operation
comprises the following steps:

1. Establish the baseband connection.

2. Open an L2CAP channel using the SDP PSM

3. Complete the bi-directional channel configuration for the SDP channel.

4. Send an SDP_ServiceSearchAttributeRequest packet on the newly opened SDP
channel.

5. Process the returned SDP_ServiceSearchAttributesResponse packet.

6. Close the SDP L2CAP channel

These steps will be described in detail in the following sections. It is assumed that the
platform has a basic implementation of the L2CAP (Logical Link Control and
Adaptation Protocol) protocol stack component and supports a minimal SDP record.
L2CAP serves as a multiplexing layer to allow multiple services to share the same radio
link between two devices. Both SDP and HID are services which use L2CAP. Note that

2005-11-24 HID Lite White Paper

Page 12 of 25

SDP is a special type of service, since it allows devices to solicit and to advertise other
services and that all HID devices must also support SDP.

3.2.1 Establishing the Baseband connection

The baseband connection is typically established via the baseband page procedure as
described in the Bluetooth Core Specification. The Bluetooth Device Address of the
device for which SDP information is sought is typically discovered during a previous
inquiry process and is given as a parameter to the baseband connection process. In
some implementations, the baseband connection may be established automatically as
part of opening the L2CAP channel as described in the next section.

NOTE: In some Bluetooth stack implementations, the baseband connection may be
established automatically as a result of a request to open an L2CAP channel to a device.

3.2.2 Opening the L2CAP Channel

Opening the L2CAP channel is typically accomplished by calling an L2CAP API function
to open a channel to an already-connected device. A Protocol Service Multiplexer (PSM)
is generally required as a parameter to such a function, and the value 0x0001 is the PSM
used to denote an SDP channel. As mentioned in the previous section, the request to
open an L2CAP channel may implicitly result in the creation of a baseband connection.

Upon a successful connection, the “open” function will at a minimum return two 2-byte
channel ID parameters which the SDP implementation must record for use in later
steps. One of the channel ID parameters identifies the L2CAP connection to the local
L2CAP implementation on the HID Lite host, while the other channel ID identifies the
channel to the L2CAP implementation on the remote HID device.

3.2.3 Configuration of the L2CAP Channel

After the L2CAP channel is opened, both of the HID host and HID device must complete
the channel configuration negotiations Please refer to the L2CAP specification contain
in the Bluetooth Core specification for additional details (as of this writing, L2CAP is
defined in Volume 3, Part A of the Bluetooth Core v2.0+EDR specification)

2005-11-24 HID Lite White Paper

Page 13 of 25

3.2.4 Sending the SDP_ServiceSearchAttributeRequest

Following the opening of the L2CAP channel on the SDP PSM, a request for the
HIDDeviceSubclass attribute can be constructed and sent. The construction of this
request is as follows:

06 PDU ID (SDP_ServiceSearchAttributeRequest = 0x06)
00 00 Transaction ID (may be any number)
00 0d ParameterLength (13 bytes to follow)
35 Indicates that a Sequence follows, and length is in the next byte
03 Sequence Length = 3
19 UUID, length 2 bytes
11 24 UUID for the HID device class
00 0f MaximumAttributeByteCount; response could be as long as 15 bytes
35 Indicates that a Sequence follows, and length is in the next byte
03 Length 3
09 Unsigned Integer, length 2 bytes
02 02 This is the AttributeID of HIDDeviceSubclass = 0x0202
00 ContinuationState (this is not a continuation of a previous request)

This packet would be passed to L2CAP for transmission and the local channel ID
recorded from the L2CAP channel open operation would be used to identify the logical
channel on which to transmit this packet.

3.2.5 Processing the SDP_ServiceSearchAttributeResponse

If successful, the response to the previously sent SDP_ServiceSearchAttributeRequest
will contain some nested sequences which must be parsed to extract the value for the
HIDDeviceSubclass attribute. The first 7 bytes of the response should appear as follows:

07 PDU ID (SDP_ServiceSearchAttributeResponse)
00 00 Transaction ID (2 bytes, should match what was sent in the request)
00 XX ParameterLength (2 bytes, value may vary depending on coding)
00 NN AttributeListsByteCount (2 bytes, value may vary depending on coding)

The remainder of the response is variable depending on how the SDP server chooses to
encode the data element sequences. There are 2 data element sequences in the
response, one embedded in the other. The length of each of the sequences may
optionally be encoded as a 1-, 2- or 4-byte value. Due to the flexibility in the sequence
length encoding, there are 9 possible response variations to the SDP query described in
the previous section. The response may be vary in size from 17 bytes to 23 bytes, and
may be any size in between except for 22 bytes.

The 9 possible responses are listed below. Note that the Attribute value is shown as
0x40 in all of these responses and indicates a keyboard class of device. However, other
values are possible and only the 2 most significant bits should be considered in
determining whether or not the device supports the boot-mode protocol and hence must
also support HID Lite.

2005-11-24 HID Lite White Paper

Page 14 of 25

Response 1 (Length = 17)

07 PDU ID (SDP_ServiceSearchAttributeResponse)
00 00 Transaction ID (should match what was sent in the request)
00 0c ParameterLength
00 09 AttributeListsByteCount
35 Sequence, length in the next byte
07 Length 7
35 Sequence, length in the next byte
05 Length 5
09 Unsigned Integer, length 2 bytes
02 02 AttributeID HID_DEVICE_SUBCLASS
08 Unsigned Integer, length 1 bytes
40 Attribute Value 0x40 Desired HIDDeviceSubclass value
00 ContinuationState

Response 2 (Length = 18)

07 PDU ID (SDP_ServiceSearchAttributeResponse)
00 00 Transaction ID (should match what was sent in the request)
00 0d ParameterLength
00 0a AttributeListsByteCount
35 Sequence, length in the next byte
08 Length 8
36 Sequence, length in the next word
00 05 Length 5
09 Unsigned Integer, length 2 bytes
02 02 AttributeID HID_DEVICE_SUBCLASS
08 Unsigned Integer, length 1 bytes
40 Attribute Value 0x40 Desired HIDDeviceSubclass value
00 ContinuationState

Response 3 (Length = 20)

07 PDU ID (SDP_ServiceSearchAttributeResponse)
00 00 Transaction ID (should match what was sent in the request)
00 0f ParameterLength
00 0c AttributeListsByteCount
35 Sequence, length in the next byte
0a Length 10
37 Sequence, length in the next d-word
00 00 00 05 Length 5
09 Unsigned Integer, length 2 bytes
02 02 AttributeID HID_DEVICE_SUBCLASS
08 Unsigned Integer, length 1 bytes
40 Attribute Value 0x40 Desired HIDDeviceSubclass value
00 ContinuationState

Response 4 (Length = 18)

07 PDU ID (SDP_ServiceSearchAttributeResponse)
00 00 Transaction ID (should match what was sent in the request)
00 0d ParameterLength
00 0a AttributeListsByteCount

2005-11-24 HID Lite White Paper

Page 15 of 25

36 Sequence, length in the next word
00 07 Length 7
35 Sequence, length in the next byte
05 Length 5
09 Unsigned Integer, length 2 bytes
02 02 AttributeID HID_DEVICE_SUBCLASS
08 Unsigned Integer, length 1 bytes
40 Attribute Value 0x40 Desired HIDDeviceSubclass value
00 ContinuationState

Response 5 (Length = 19)

07 PDU ID (SDP_ServiceSearchAttributeResponse)
00 00 Transaction ID (should match what was sent in the request)
00 0e ParameterLength
00 0b AttributeListsByteCount
36 Sequence, length in the next word
00 08 Length 8
36 Sequence, length in the next word
00 05 Length 5
09 Unsigned Integer, length 2 bytes
02 02 AttributeID HID_DEVICE_SUBCLASS
08 Unsigned Integer, length 1 bytes
40 Attribute Value 0x40 Desired HIDDeviceSubclass value
00 ContinuationState

Response 6 (Length = 21)

07 PDU ID (SDP_ServiceSearchAttributeResponse)
00 00 Transaction ID (should match what was sent in the request)
00 10 ParameterLength
00 0d AttributeListsByteCount
36 Sequence, length in the next word
00 0a Length 10
37 Sequence, length in the next d-word
00 00 00 05 Length 5
09 Unsigned Integer, length 2 bytes
02 02 AttributeID HID_DEVICE_SUBCLASS
08 Unsigned Integer, length 1 bytes
40 Attribute Value 0x40 Desired HIDDeviceSubclass value
00 ContinuationState

Response 7 (Length = 20)

07 PDU ID (SDP_ServiceSearchAttributeResponse)
00 00 Transaction ID (should match what was sent in the request)
00 0f ParameterLength
00 0c AttributeListsByteCount
37 Sequence, length in the next d-word
00 00 00 07 Length 7
35 Sequence, length in the next byte
05 Length 5
09 Unsigned Integer, length 2 bytes
02 02 AttributeID HID_DEVICE_SUBCLASS
08 Unsigned Integer, length 1 bytes

2005-11-24 HID Lite White Paper

Page 16 of 25

40 Attribute Value 0x40 Desired HIDDeviceSubclass value
00 ContinuationState

Response 8 (Length = 21)

07 PDU ID (SDP_ServiceSearchAttributeResponse)
00 00 Transaction ID (should match what was sent in the request)
00 10 ParameterLength
00 0d AttributeListsByteCount
37 Sequence, length in the next d-word
00 00 00 08 Length 8
36 Sequence, length in the next word
00 05 Length 5
09 Unsigned Integer, length 2 bytes
02 02 AttributeID HID_DEVICE_SUBCLASS
08 Unsigned Integer, length 1 bytes
40 Attribute Value 0x40 Desired HIDDeviceSubclass value
00 ContinuationState

Response 9 (Length = 23)

07 PDU ID (SDP_ServiceSearchAttributeResponse)
00 00 Transaction ID (should match what was sent in the request)
00 12 ParameterLength
00 0f AttributeListsByteCount
37 Sequence, length in the next d-word
00 00 00 0a Length 10
37 Sequence, length in the next d-word
00 00 00 05 Length 5
09 Unsigned Integer, length 2 bytes
02 02 AttributeID HID_DEVICE_SUBCLASS
08 Unsigned Integer, length 1 bytes
40 Attribute Value 0x40 Desired HIDDeviceSubclass value
00 ContinuationState

3.2.6 Closing the L2CAP Channel

After the HIDDeviceSubclass attribute has been obtained, the L2CAP channel to the
remote SDP server on the HID device may be closed. This is generally accomplished
through a call to an API which accepts the local channel ID of the channel to be closed as
a parameter.

NOTE: Some HID devices may not support cases where the SDP and HID channels are
simultaneously open. Such devices should contain the SDP attribute HIDSDPDisable
with the value of “true”. However, to simplify the HID Lite implementation, it is
recommended that the HID Lite host close the SDP channel before opening either of the
HID L2CAP channels for all devices in order to avoid the need to retrieve the
HIDSDPDisable attribute.

2005-11-24 HID Lite White Paper

Page 17 of 25

4 Security

The use of security is mandatory for all Bluetooth keyboards. It is recommended that
random PIN codes of at least 8 decimal digits be required to ensure reasonable security.

- Authentication mandatory if pairing is supported

- Encryption mandatory for keyboards (if set in features)

2005-11-24 HID Lite White Paper

Page 18 of 25

5 Connection Establishment

The connection establishment process between a HID host from a HID peripheral is as
follows:

1. User (or host in some cases) selects HID with which to connect
2. Host establishes a baseband connection with the HID

a. Host performs baseband paging
b. Features are exchanged
c. Authentication performed (mandatory for keyboards)
d. Encryption enabled (mandatory for keyboards, optional for mice)

3. Host opens HID Control L2CAP PSM (0x0011)
4. Host opens HID Interrupt L2CAP PSM (0x0013)
5. Host sends SET_PROTOCOL to select boot-protocol
6. Host waits for keyboard or mouse reports to be sent from HID interrupt channel

To disconnect from a device, a HID Lite Host must first close the HID Interrupt
channel and then close the HID Control channel.

2005-11-24 HID Lite White Paper

Page 19 of 25

6 Boot Protocol

As previously mentioned, since a HID using the boot protocol uses fixed reports, it is not
necessary for a host which supports only the boot protocol to have a HID parser.
Instead, the host software drivers may be “hard-coded” to handle only those reports
defined by the boot protocol. For keyboards, the report format is 9 bytes in length. For
a mouse, the report format is 4 bytes in length.

NOTE: Boot protocol reports are allowed to be extended up to 9 bytes, including the
Report ID. The extended data may be equivalent to data sent in a valid report protocol
mode report, or may be vendor-specific. Since boot protocol keyboard reports are
already 9 bytes in length, they may not be extended. However, there is 1 byte within the
keyboard report which is reserved for vendor-specific use. In addition, up to 5 bytes
may be appended to mouse reports. HID hosts are required to ignore any extended data
when operating in boot protocol mode.

Device Report ID Report Size

Reserved 0 N/A

Keyboard 1 9 Bytes

Mouse 2 4 Bytes

Reserved 3-255 N/A

Table 1: Bluetooth HID Boot Report IDs

The following sections describe the report formats supported in the boot protocol.

6.1 Keyboard Boot Protocol Input Report

BYTE D7 D6 D5 D4 D3 D2 D1 D0

0 Report ID = 0x01
1 Right

GUI
Right

Alt
Right
Shift

Right
Control

Left
GUI

Left
Alt

Left
Shift

Left
Control

2 Reserved (0x00)
3 Key 1
4 Key 2
5 Key 3
6 Key 4
7 Key 5
8 Key 6

Byte 0 of the boot protocol keyboard report contains the Report ID and is fixed at a
value of 0x01 for a keyboard.

2005-11-24 HID Lite White Paper

Page 20 of 25

Byte 1 is sometimes called the modifier status byte. It reports the status of the Shift, Alt,
Control, and GUI keys present on many keyboards. For each of the 4 modifier key types,
there is a bit for the key if it appears on the left side of the keyboard and a bit for the key
if it appears on the right side. If a modifier key is pressed, the corresponding bit in the
modifier status byte is set to 1. If the corresponding key is not pressed, or does not exist
on the keyboard, the respective bit is set to 0.

Byte 2 is reserved for vendor-specific use. If this byte is used for vendor-specific
information, it is recommended that the host implementation check vendor or version
information for the keyboard before acting upon the information in this field. How this
may be done is beyond the scope of this document. Refer to the CompID in the LMP
version information fields as described in the Bluetooth Core v2.0+EDR specification,
or the Device ID v1.0 specification for information on identification information which a
vendor might use to identify devices.

Bytes 3 through 8 compose the 6-byte key status array. These bytes are used to indicate
which keys are currently being held down on the keyboard. Up to 6 non-modifier keys
may be reported simultaneously. To report a key, the keyboard places codes into the key
status array which correspond to specific keys pressed on the keyboard. For a keyboard
in boot protocol mode, the host can simply use the reported codes as indices into a look-
up table to determine the keys pressed.4

The codes allowed in the boot mode keyboard are defined in the Keyboard/Keypad Page
section of the HID Usage Table (HUT) specification. The HUT specification document
may be downloaded from the USB Implementers’ Forum (USB-IF) website here:

http://www.usb.org

If more than 6 keys are held down at a time, the keyboard is required to report.the
special usage code ErrorRollOver which has a value of 0x01. This code must be reported
in all 6 array bytes. The keyboard may also report the 0x01 value in all 6 array bytes is a
phantom or ghost condition is present.

If less than 6 keys are down, the key codes reported should appear first in the buffer and
the remaining bytes filled with the code 0x00.

4 Note that the report codes used for a keyboard operating in report protocol mode are interpreted
somewhat differently than codes reported when the keyboard operates in boot protocol mode. In report
protocol mode, each codes reported is an intermediate “scan code” which in turn is used as an index to
look up what is called a usage code. However, the boot protocol mode was designed such that the scan
codes are equal to the usage codes to simplify the decoding of the report by a boot mode host, which of
course also facilitates the implementation of HID Lite host devices.

2005-11-24 HID Lite White Paper

http://www.usb.org/

Page 21 of 25

6.2 Keyboard Boot Protocol Output Report

BYTE D7 D6 D5 D4 D3 D2 D1 D0

0 Report ID = 0x01
1 0 0 0 Kana Compose Scroll-

Lock
Caps-
Lock

Num-
Lock

Keyboards supporting boot-protocol may optionally support the above output report to
control LEDs on the keyboard. The output report must be sent either over the HID
Control channel using the SET_REPORT command or over the HID Interrupt channel
as a DATA payload (see the Bluetooth HID Profile specification for an explanation of a
DATA payload). Since the SET_REPORT method entails a handshake packet, it may
simplify the HID Lite host implementation if the report be sent over the Interrupt
channel. In this way, the host need not wait for a response nor take any special action if
the device does not support the LED output report.

6.3 Mouse Boot Protocol Input Report

BYTE D7 D6 D5 D4 D3 D2 D1 D0

0 Report ID = 0x02
1 0 0 0 0 0 M-Btn R-Btn L-Btn
2 X-Axis displacement (8 bits)
3 Y-Axis displacement (8 bits)

Byte 0 contains the Report ID which is fixed at 0x02 for a mouse in boot protocol mode.

Byte 1 contains the button status bits:

• L-Btn = Left Mouse Button (1 = pressed, 0 = not pressed)

• M-Btn = Middle Mouse Button (1 = pressed, 0 = not pressed)

• R-Btn = Right Mouse Button (1 = pressed, 0 = not pressed)

Bytes 2 and 3 contain the X- and Y-Axis displacement reports:

• X = X-Axis Data (2’s complement format with valid range from -127 to +127)

• Y = Y-Axis Data (2’s complement format with valid range from -127 to +127)

2005-11-24 HID Lite White Paper

Page 22 of 25

Appendix A: Pending Errata Impacting this Whitepaper

The Bluetooth HID Profile Specification and PICS documents version 1.0 contain
inconsistencies which make it difficult or impossible to qualify hosts which support only
boot protocol mode, a.k.a. “boot mode only hosts.” Erratum 747 corrects this issue and
as of this writing has been approved by the HID Profile Working Group, but has not
been formerly incorporated into the HID Profile Specification. Detailed information on
the status of erratum 747 is available at the following links, which should be accessible
to all Bluetooth SIG members:

http://errata.bluetooth.org/dp_view_all.cfm?errata_id=747

http://errata.bluetooth.org/draft_files/Errata%20Proposal%20Boot%20Mode%20Only
%20Hosts_5_18_2005.doc

It is expected that additional errata will be created to remove the text suggesting the use
of the Class of Device field for identifying boot-mode capable Bluetooth HID devices.
See Appendix B for more information.

Future Bluetooth HID devices will require the use of both Limited and General Inquiry
Access Codes. This will mean that HID hosts will have the option of searching for
devices using either the LIAC or the GIAC. In environments with many discoverable
devices, this will provide an advantage for HID devices as hosts will be able to reduce
inquiry times by using the LIAC.

2005-11-24 HID Lite White Paper

http://errata.bluetooth.org/dp_view_all.cfm?errata_id=747
http://errata.bluetooth.org/draft_files/Errata Proposal Boot Mode Only Hosts_5_18_2005.doc
http://errata.bluetooth.org/draft_files/Errata Proposal Boot Mode Only Hosts_5_18_2005.doc

Page 23 of 25

Appendix B: Use of Class of Device to Identify Boot-Mode
Capable Devices

At the time of this writing, the Bluetooth HID Profile version 1.0 defines a means of
identifying Bluetooth HID keyboards and mice using the Class of Device (CoD)
information obtained during device discovery (also known as the “Inquiry” process).
The text of the current specification suggests that, for a host which only implements the
boot protocol, the SDP client functionality is then not needed, as the Major and Minor
Device Class fields of the of the CoD field obtained during Inquiry indicates whether the
device is a mouse or keyboard.

However, it is recommended that the Class of Device field be used only for the purposes
of selecting an icon to display for a remote device during the device discovery process.
Users may wish to use multi-function devices which implement the Bluetooth HID
specification, but for which the primary function may be something other than a
keyboard or pointing device.

For example, some PDAs on the market today feature small “thumb” keyboards. A user
might wish to use such a PDA as a keyboard to input text on another device. The PDA is
likely to report a CoD appropriate for a PDA (e.g. 0x000110 or 0x000114). Hence, a
HID Lite implementation which relies solely on the CoD obtained in the Inquiry
response to identify Bluetooth keyboards and pointing devices will not support using
multi-function devices such as the example PDA.

The following are references from the Bluetooth HID Profile version 1.0 specification
where the use of the CoD is recommended to identify boot devices. However, this usage
of CoD is no longer recommended.

§5.5.1 BIOS Requirements for Boot Device Support:

The PC BIOS may use the Class of Device bits in the FHS packet to
discover a mouse and keyboard as an alternative to reading the SDP
record of the device.

§7.2.1 Boot Mode Operation:

Boot mode was originally defined by USB HID to simplify the design of
PC BIOSs; however, it has proved useful for a variety of products with
small, embedded operating systems. When a HID device is in Boot mode,
a HID parser and SDP client is not required in the host system.

2005-11-24 HID Lite White Paper

Page 24 of 25

Appendix C: SPP Compliant Input Device
Implementations

As of this writing, there are reports of keyboards and pointing devices on the market
which use Bluetooth as the over-the-air protocol, but which do not conform to the
existing Bluetooth HID specifications. These implementations have been motivated by
the existence of legacy platforms such as cellular phones and PDAs which do not
implement the Bluetooth HID profile. Many of these platforms have limited Bluetooth
stacks which often:

• Support only a fixed number of profiles

• Are not readily upgradeable by the end-user

• Support the Bluetooth Serial Port Profile (SPP)

• Offer SPP APIs to user-loadable applications

• Do not expose L2CAP APIs to user-loadable applications

Many of these platforms also support keyboard input via a wired serial port connection,
or via an infrared (IrDA) interface which is also a serial interface. Utilizing SPP may be
the only way to provide keyboard and pointing device input capability for such
platforms.

However, since there is no Bluetooth profile or other Bluetooth specification defining
how keyboards or point devices are to be implemented over SPP, such devices may not
interoperate with other Bluetooth devices as expected, and hence may create confusion
for end-users in the marketplace.

Furthermore, the SPP does not require security to be used, and hence sensitive data
typed on a keyboard which uses SPP to transmit keystroke information may be
vulnerable to eavesdropping. The Bluetooth HID Profile mandates the use of security
for all keyboards.

For these reasons, the practice of using SPP for these implementations is strongly
discouraged. For all new host platform development, it is recommended that the
guidelines in this HID Lite whitepaper be followed at a minimum.

However, for legacy host platforms for which HID Lite cannot be implemented, it is
recommended that the use of security is enforced for keyboard devices. In addition, for

2005-11-24 HID Lite White Paper

Page 25 of 25

HID devices designed to work with such host platforms, it is strongly recommended that
such devices support both the Bluetooth HID Profile specification in addition to the SPP
based input protocol so as to enable the input device to interoperate with host stacks
which do support the Bluetooth HID Profile.

2005-11-24 HID Lite White Paper

	Special Interest Group (SIG)
	Disclaimer and Copyright Notice
	Contents
	Class of Device and SDP Attribute Recommendations
	Minimal SDP Implementation
	Establishing the Baseband connection
	Opening the L2CAP Channel
	Configuration of the L2CAP Channel
	Sending the SDP_ServiceSearchAttributeRequest
	Processing the SDP_ServiceSearchAttributeResponse
	Closing the L2CAP Channel

	Keyboard Boot Protocol Input Report
	Keyboard Boot Protocol Output Report
	Mouse Boot Protocol Input Report

	Appendix A: Pending Errata Impacting this Whitepaper
	Appendix B: Use of Class of Device to Identify Boot-Mode Cap
	Appendix C: SPP Compliant Input Device Implementations

