

PROFILE TUNING SUITE (PTS)

AUTOMATING - USING IMPLICIT SEND

BLUETOOTH PTS AUTOMATING – USING IMPLICIT SEND Page 2 of 19

December 12, 2017

Disclaimer and Copyright Notice

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY

WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR

ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Any liability,

including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein.

Copyright © 2001–2017 Bluetooth® SIG, Inc.

BLUETOOTH PTS AUTOMATING – USING IMPLICIT SEND Page 3 of 19

December 12, 2017

Table of Contents

1 PTS Terminology .. 4
2 Automating PTS .. 4

2.1 “Operator-less Operation” .. 5
2.2 Automation test platforms .. 6
2.3 PTS test case operation .. 7

3 Implicit Send DLLs ... 7
3.1 Basic information ... 7
3.2 Implicit Send functions .. 8

3.2.1 Conventions ... 8
3.2.2 InitImplicitSend() .. 8
3.2.3 ImplicitStartTestCase() .. 9
3.2.4 ImplicitSendStyle() / ImplicitSendStyleEx() ... 9
3.2.5 ImplicitSendPinCode() / ImplicitSendPinCodeEx() .. 10
3.2.6 ImplicitTestCaseFinished() .. 10
3.2.7 Final cleanup .. 10

3.3 Message tags .. 11
3.3.1 Finding the tags .. 12

3.4 MMI styles ... 12
3.4.1 “Simple prompt” message type .. 13
3.4.2 “Request for data input” message type .. 13
3.4.3 “Select item from a list” message type .. 13

3.5 Software build requirements .. 15
4 Activating a custom Implicit Send DLL .. 16

4.1 Usage notes .. 17
5 Technical tidbits .. 17

5.1 Automatic dismissal of Implicit Send requests .. 17
5.2 ImplicitSend() function .. 18
5.3 TSPX_use_implicit_send ... 18
5.4 Sample source code .. 18
5.5 One DLL or many DLLs? .. 18
5.6 Hybrid environments .. 19

BLUETOOTH PTS AUTOMATING – USING IMPLICIT SEND Page 4 of 19

December 12, 2017

1 PTS Terminology

 IUT (Implementation Under Test): The device, component or subsystem to be tested.

 Workspace: A group of profile and protocol test suites to be tested against the Implementation Under

Test. A workspace may be thought of as representing a device, component or subsystem.

 Project: A profile or protocol test suite and its associated data files. One or more projects may be

present in a workspace. Each project represents a profile or protocol supported by the IUT.

 ICS (Implementation Conformance Statement): Official declaration of the profile or protocol

features and functions that are supported by the IUT. Each item in the ICS selects one or more tests

that must be executed to demonstrate proper implementation.

 IXIT (Implementation Extra Information for Testing): Data items, such as the Bluetooth Device

Address (BD_ADDR), that are specific to a IUT. In general, IXIT items represent data that cannot be

specified in advance by the programmer who created a test case or test suite.

 ETS (Executable Test Suite): Each profile or protocol specified for use in Bluetooth wireless

technology has an accompanying test specification. An ETS is a programmatic representation of the

test purposes found in a test specification. Test cases in an ETS are executed under the control of the

Profile Tuning Suite.

 Test Purposes vs. Test Cases: A test specification defines many test purposes which describe the

environment that must be present to perform a test of a particular feature or function, the proper

procedure to perform a test, and the expected outcome of a test.

A test case is specific implementation of a test purpose, for example, a test case found in a PTS

Executable Test Suite.

 Test Case Naming: Each test purpose defined in a test specification is identified by a name which is

created according to a standard policy. The name identifies which groups of tests a test case belongs

to along with the nature of the test. Test purpose names are in a format like

<PROFILE>/<ROLE>/<FEATURE>/BV-01-I (example: A2DP/SNK/AS/BV-01-I)

In the PTS, the naming format matches the test specification identification convention exactly.

2 Automating PTS

The Profile Tuning Suite (PTS) offers three features which can be used in automated testing:

1. “Operator-less Operation” allows the interactive prompts that appear during the execution of a test case to be

processed by user written software which can inspect each message and take appropriate action.

This feature can be used with either of the following program control features and is described in this document

and in “Automating” section of the PTS Help.

2. “Scripted Operation” where a set of test cases can be selected and run as a group. The group can be executed as

needed, or scheduled for execution later.

BLUETOOTH PTS AUTOMATING – USING IMPLICIT SEND Page 5 of 19

December 12, 2017

The “Scripting” section of the PTS Help document describes this feature.

3. “Fully Automated Operation” – PTS provides an Application Programming Interface (API) which allows

complete control of the software. User written programs can take advantage of the API in order to open

Workspaces, select Projects, execute Test Cases, and many other functions.

“Fully Automated Operation” is described in the “Extended Automating” section of the PTS Help and in

…\Bluetooth SIG\Bluetooth PTS\SampleCode\PTSControlClient\Extended_Automating.pdf document.

2.1 “Operator-less Operation”

Many, if not most, of the Bluetooth qualification tests are designed around the idea that a human test operator is part

of test environment – operating the tester and performing manual operations on the Implementation Under Test

(IUT). This can be seen in the various test specifications in comments like

 Expected Outcome

Pass verdict:

The Object Push operation is processed correctly and completed corresponding to the settings and

user actions.

Client:

- The Object Push function is initiated by user action and not automatically.1

Part of the reason for this is that the Bluetooth Special Interest Group (SIG) does not specify the ways in which users

are to interact with Bluetooth enabled devices. This can also be seen in the test specifications

 Test Procedure

…

Server:

…

- (Depending on the architecture that is to use the object push feature the steps how an item is pushed

may vary).1

In its default configuration, the Profile Tuning Suite (PTS) presents the test operator with various popup dialogs

during the execution of a test case. These dialogs may be used to

 Ask the test operator to perform a function on the

IUT;

1 Description of Test Purpose OPP/SR/OPH/BV-03-I, Object Push Profile Specification Test Suite
Structure (TSS) and Test Purposes (TP), section 4.2.3. Document Number OPP.TS/1.2.1.

BLUETOOTH PTS AUTOMATING – USING IMPLICIT SEND Page 6 of 19

December 12, 2017

 Ask the test operator to confirm that a file transfer

or other operation completed successfully;

 Ask the test operator to enter data needed for the

test.

2.2 Automation test platforms

Having a test operator involved in the testing process can be very time consuming. Additionally, regression testing

becomes somewhat difficult since a test operator needs to “babysit” the testing process. For this reason, many

organizations create automation test platforms to be used in the testing of their devices. These platforms may have

the ability to press buttons, recognize prompts and messages on the display, or access the storage on the device for

contact items, pictures, or other files. These operations are controlled by software running on a computer that is

connected to the test platform.

PTS can work with automation test platforms by providing a user defined mechanism that can be used to replace the

popup dialogs mentioned above. Instead of sending the various messages to the display, PTS can be configured to

send them to user written replacement functions that in turn can interact directly with the device being tested.

BLUETOOTH PTS AUTOMATING – USING IMPLICIT SEND Page 7 of 19

December 12, 2017

2.3 PTS test case operation

As mentioned above, there are various points during test case execution where PTS needs to interact with the test

operator or an automation platform. When this occurs

1. The part of the test case that needs outside assistance sends a request to the “MMI Handler”. PTS test cases are

implemented using a Main Test Component (MTC) and some number of Parallel Test Components (PTCs). The

PTCs provide various support functions and operate concurrently with the main body of the test. PTCs are often

used to implement a protocol layer in the Bluetooth stack or to serve as the “knowledgeable authority” for the

details of a Bluetooth profile.

The MTC and the various PTCs interact with one another to process commands, responses and the transfer of

data between themselves and the Implementation Under Test (IUT).

The MMI PTC handles the interaction with the outside environment. Since it operates in parallel with the other

parts of the test, test case execution is not held up while waiting for a response from the test operator.

2. After receiving a request, the MMI PTC passes it on to a support library known as an “Implicit Send DLL”.

3. The Implicit Send DLL performs whatever steps are needed to execute the request and waits for a response.

4. The response is sent back up the chain to the MMI PTC, and from there to whatever Test Component is

expecting it.

3 Implicit Send DLLs

PTS provides a default version of the Implicit Send DLL. It is this DLL that provides the popup dialogs that one

normally sees when using the PTS.

To integrate PTS with an automation test platform, a custom Implicit Send DLL needs to be developed.

3.1 Basic information

 Implicit Send DLLs are standard Windows Dynamic Link Libraries.

 Implicit Send DLLs are written in C++.

The interface between the PTS and an Implicit Send DLL uses the std::string class from the Standard Template

Library (STL), and the “bool” data type. No other C++ features are used, so someone knowledgeable in the C

programming language should not have too much trouble.

 An Implicit Send DLL provides five functions:

o InitImplicitSend()

o ImplicitSendStyle() / ImplicitSendStyleEx()

o ImplicitSendPinCode() / ImplicitSendPinCodeEx()

o ImplicitStartTestCase()

o ImplicitTestCaseFinished()

All five functions must be provided. If any one of the functions is missing, or has an incorrect name, PTS will

be unable to load the DLL. The ImplicitSendStyleEx() and ImplicitSendPinCodeEx() take an extra parameter of

Bluetooth address of PTS. If the Ex version of both functions is provided, PTS will ignore the non-Ex functions.

Otherwise, both non-Ex functions must be provided. The functions are described in the following section (3.2,

“Implicit Send functions”).

BLUETOOTH PTS AUTOMATING – USING IMPLICIT SEND Page 8 of 19

December 12, 2017

 Implicit Send DLLs are loaded dynamically. They are standalone entities that do not need special names or

folder locations for PTS to locate them. (A configuration setting tells PTS where to find the DLL.)

3.2 Implicit Send functions

3.2.1 Conventions

Each of the function definitions contains the following two declarations. These declarations must be used for the

interface between PTS and an Implicit Send DLL to work correctly.

 extern “C” – This declaration tells the C++ compiler that the symbol name for a function is not to be decorated

in any way. The C++ language allows multiple functions with the same name, if they have different parameter

lists and/or return types. This is accomplished by changing – or “decorating” – the function names behind the

scenes, resulting in each function having a different name.

PTS expects the functions in an Implicit Send DLL to have plain, undecorated names.

 WINAPI – This declaration tells the C++ compiler that the function calling convention is the same as functions

defined in the Windows API. This primarily has an impact on parameter handling during the calls from PTS to

the Implicit Send functions.

3.2.2 InitImplicitSend()

Declaration: extern "C" bool WINAPI InitImplicitSend(void);

Parameters: None

Return values: “true” if successful

 “false” if not successful

This function is called during the initialization of an Executable Test Suite (ETS), just after the Implicit Send DLL

has been loaded into memory. It can be used to perform any initialization that might be needed before executing test

cases.

If no initialization is required, the function can simply return a value of “true”.

If the initializations failed, which would lead to the DLL not being usable, a “false” value should be returned. In this

case, the ETS will be disabled.

BLUETOOTH PTS AUTOMATING – USING IMPLICIT SEND Page 9 of 19

December 12, 2017

3.2.3 ImplicitStartTestCase()

Declaration: extern "C" void WINAPI ImplicitStartTestCase(std::string& strTestCaseName);

Parameters: A character string containing the name of the current test case

Return values: None

ImplicitStartTestCase() is called at the start of each test case execution. It provides the name of the test case that is

starting.

This function can be used to perform initializations that are needed at the start of every test case. The test case name

allows the initialization process to be customized to specific test cases.

3.2.4 ImplicitSendStyle() / ImplicitSendStyleEx()

Declaration: extern "C" char* WINAPI ImplicitSendStyle(std::string& strMmiText,UINT mmiStyle);

Parameters: strMmiText – Information about the MMI (Implicit Send) request being made

 mmiStyle – A value describing the type of request and the expected values

 strBdAddr – (ImplicitSendStyleEx only) Bluetooth address of PTS

Return values: A pointer to a character string containing the information to be returned

 A NULL pointer if the request cannot be processed or no information is to be returned

This is the main routine for handling Implicit Send requests; most of interactions with the test operator or automated

test environment will be handled by this function.

strMmiText will consist of two pieces

 A message “tag” that uniquely identifies the message (see section 3.3, “Message tags”).

 Message text that would normally be displayed to the test operator.

In the default, Implicit Send DLL used by PTS, the mmiStyle parameter is used to select the style of dialog box that

is to be displayed. Custom DLLs can use this information to determine how to process the strMmiText, the type of

request that is being made, and the expected return values.

In most cases, the return value will be a pointer to a string containing the word “OK”. Some requests, such as those

using MMI_Style_Edit1 expect a string of data – for example, a PIN code or a file name – as the return value.

The MMI_Style_Edit2 style provides a list of items in the strMmiText and expects one of those items to be returned.

For more information on the MMI styles see section 3.4, “MMI styles”.

3.2.4.1 Scope of the return value

It is important to note that the character string that is pointed at by the ImplicitSendStyle() return value must not go

“out of scope”. For example, std::string values that are created during the execution of a function are likely to be

destroyed when the function exits. The returned pointer may continue to point at valid text, but there is a good

chance that the memory space used by the string could be reused.

One way to avoid this type of issue is to create the string to be returned in dynamic memory (using malloc() or

“new”). The string would then be added to a list or variable sized array (such as a std::vector). All of strings returned

during the execution of the test case would remain until the end of the test, at which time they could be destroyed.

BLUETOOTH PTS AUTOMATING – USING IMPLICIT SEND Page 10 of 19

December 12, 2017

For an example of one way to do this, look in sample source code (see section 5.4, “Sample source code”) at the

PersistentText C++ class (PersistentText.cpp/.h) and how the class is used in ImplicitSend.cpp. In this example, the

most recently returned string is “persistent” and is deleted when the Implicit Send DLL is unloaded.

3.2.5 ImplicitSendPinCode() / ImplicitSendPinCodeEx()

Declaration: extern "C" char* WINAPI ImplicitSendPinCode(void);

Parameters: strBdAddr – (ImplicitSendPinCodeEx only) Bluetooth address of PTS

Return values: A pointer to a character string containing a PIN code to be returned

 A NULL pointer if the request cannot be processed or no PIN code is to be returned

This is a special case function that is only used when a dynamic PIN code is needed.

It is not currently used in PTS, but it might be used in the future. One way to implement this function to be prepared

for future use is

extern "C" char* WINAPI ImplicitSendPinCode(void)

{

std::string strPrompt = "Please enter a PIN Code:";

return(ImplicitSendStyle(strPrompt,MMI_Style_Edit1));

}

Please refer to the previous section (3.2.4.1, “Scope of the return value”) for details regarding the return value from

this function.

3.2.6 ImplicitTestCaseFinished()

Declaration: extern "C" void WINAPI ImplicitTestCaseFinished(void);

Parameters: None

Return values: None

ImplicitTestCaseFinished() is called at the end of test case execution. It may be used to perform any cleanup that is

needed, or to undo operations that were performed during ImplicitStartTestCase().

3.2.7 Final cleanup

The Implicit Send API does not provide a final cleanup function. Generally, such a function is not needed because

the unloading of the DLL or the termination of the main PTS executable causes resources such as open files to be

closed and dynamic memory to be released.

Should some form of final cleanup be required, the following is suggested:

1. Create a C++ class that contains the various objects that need to be cleaned up when the DLL is unloaded.

2. Declare an instance of the class at module level scope and make sure that the class is visible to all functions that

need to access the data within. Variables declared at “module level scope” are those that are declared

somewhere in a source file, but outside the boundary of all the functions in the file.

3. Place the necessary cleanup code in the class destructor. When a DLL (or executable program) is about to be

unloaded from memory, the C++ runtime support invokes the destructor for each instance of a class that is

defined at module level scope. Placing the cleanup code in the destructor ensures that it executes at the proper

time.

BLUETOOTH PTS AUTOMATING – USING IMPLICIT SEND Page 11 of 19

December 12, 2017

4. Note that the standard C++ “singleton pattern” should not be used here. The standard singleton pattern uses a

pointer to an instance of a class. The runtime support cleanup code will NOT call the destructor for an object

that is accessed indirectly via a pointer.

As mentioned in section 3.2.4.1 (“Scope of the return value”), the sample source code for the default Implicit Send

DLL uses this mechanism to address the ImplicitSendStyle() return value “persistency” issue.

Another possibility is to use a DllMain() function and perform the cleanup work when it is called with a reason code

of DLL_PROCESS_DETACH. Note however that the use of DllMain() is no longer recommended by Microsoft.

When using current versions of the Microsoft development tools, DllMain() isn’t even required – the language

runtime support provides its own.

3.3 Message tags

As mentioned in section 3.2.4, the strMmiText parameter passed to ImplicitSendStyle() is a string consisting of two

parts. One of those parts is a message tag that uniquely identifies the message.

The purpose of the message tags is that they will always be the same regardless of the informational text that may be

displayed to a test operator. This means that custom Implicit Send DLLs do not need to process the informational

text – they only need to process the tag to know what request is being made.

The message is at the beginning of the strMmiText string and is in the following format

{<message number>,<test case name>,<test suite name>}

where

 <message number> identifies a message within a given test suite;

 <test case name> identifies the executing test case;

 <test suite name> identifies the Executable Test Suite than contains the currently executing test case.

The combination of <message number> and <test suite name> uniquely identifies a message across all Executable

Test Suites. For example

 {999,<any test case name>,OPP}

 {999,<any test case name>,FTP}

are different messages even though they have the same <message number>.

The <test case name> helps to identify the usage of the message. For example, in the Object Push Profile (OPP) test

suite <message number> 47 is used in every test case where the test operator (or automated test platform) needs to

confirm that an object transfer occurred successfully. In test case OPP/SR/OPH/BV-03-I the operator needs to

confirm that a new contact entry with the name “OPHBV03” is on the IUT. In OPP/SR/OPH/BV-07-I, a new

calendar entry titled “OPHBV07” should have been created.

An automated test platform can distinguish between the two uses of <message number> 47 by looking at the <test

case name>

{47,OPP/SR/OPH/BV-03-I,OPP}Please check that …

BLUETOOTH PTS AUTOMATING – USING IMPLICIT SEND Page 12 of 19

December 12, 2017

{47, OPP/SR/OPH/BV-07-I,OPP}Please check that …

3.3.1 Finding the tags

The default Implicit Send DLL provided with PTS removes the tags before sending the message text to the popup

dialog. In other words, in normal operation PTS does not display the message tags.

There are three ways to determine the tag associated with a given message:

3.3.1.1 Have the default Implicit Send DLL display the tag

Starting with version 4.5.3 of PTS, the default Implicit Send DLL has the option to display both the style of each

message along with its tag. This functionality is enabled by adding the following lines to PTS.ini, normally found in

C:\Users\<USER>\AppData\Roaming\Bluetooth_SIG\ProfileTuningSuite_6.

[ImplicitSend]

showTag=1

For the example above, this setting will cause the

dialog to look something like this:

3.3.1.2 Consult the ATS document

Each test suite has an accompanying Abstract Test Suite (ATS) document that describes the details of the suite and

its environment. In each ATS document there is a section on Implicit Send that includes a table listing each of the

messages including their tags.

For example:

The “%s” in the message tag is replaced with the name of the currently executing test case at runtime.

3.4 MMI styles

The mmiStyle parameter to ImplicitSendStyle() provides direction about the contents of the strMmiText parameter

along with an indication of the expected return value. When used with the default PTS Implicit Send DLL, the

mmiStyle value selects the type of dialog box that will be displayed along with the buttons that will appear.

mmiStyle name Value Message Type
Buttons Displayed by the default

Implicit Send DLL

MMI_Style_Ok_Cancel1 0x11041 Simple prompt
OK, Cancel

Default: OK

MMI_Style_Ok_Cancel2* 0x11141 Simple prompt Cancel

MMI_Style_Ok 0x11040 Simple prompt OK

BLUETOOTH PTS AUTOMATING – USING IMPLICIT SEND Page 13 of 19

December 12, 2017

MMI_Style_Yes_No1 0x11044 Simple prompt
Yes, No

Default: Yes

MMI_Style_Yes_No_Cancel1 0x11043 Simple prompt
Yes, No, Cancel

Default: Yes

MMI_Style_Abort_Retry1 0x11042 Simple prompt
Abort, Retry, Ignore

Default: Abort

MMI_Style_Edit1 0x12040 Request for data input
OK, Cancel

Default: OK

MMI_Style_Edit2 0x12140 Select item from a list
OK, Cancel

Default:OK

*Note: When ImplicitSendStyle() is called with style MMI_Style_Ok_Cancel2, implementation may signal the

IUT the requested action after the message tag is identified but it should not block in the function. Otherwise,

it may block PTS from progressing. Implementation should always return “OK”.

3.4.1 “Simple prompt” message type

These MMI styles are used to instruct the test operator or automation test platform to take an action. The action may

be to make a connection from the IUT to the PTS, press a button on the IUT, etc.

For these messages, the strMmiText contains instructions about the action that is needed.

If the action can be successfully completed, the return value from ImplicitSendStyle() should be a pointer to a

character string such as “OK”. Please be sure to look at section 3.2.4.1 (“Scope of the return value”) for important

information about the “scope” of the string that is returned.

Successful completion is indicated in the default Implicit Send DLL when the user presses the OK, Yes, Retry or

Ignore buttons.

If the operation cannot be completed, or the proper response to an action is to indicate that it did not happen,

ImplicitSendStyle() should return a NULL pointer.

3.4.2 “Request for data input” message type

This message style is used when information is needed from the test environment, and that information is not

available until after the test case begins execution. For example, the Passkey Entry association model in Secure

Simple Pairing requires that one device display a six-digit number. The number must be entered on the other device

to complete the association process. The number itself is random and is not generated until the Secure Simple

Pairing process begins.

strMmiText describes the information that is being requested.

The return value from ImplicitSendStyle() should be a pointer to a character string containing the requested data, if

the data is available. If the requested data is not available, or an error occurs, a NULL pointer should be returned.

As has been noted above, the string pointed at by the return value should not be allowed to go out of scope. (Section

3.2.4.1, “Scope of the return value”.)

3.4.3 “Select item from a list” message type

For this message strMmiText contains a list of strings separated by newline characters. (C/C++: ‘\n’, ASCII code

0x0A.) The first string in the list contains the instructions to the user. The rest of the strings provide a list values for

selection. The list is ended by an empty line.

For example, strMmiText may contain the following information

BLUETOOTH PTS AUTOMATING – USING IMPLICIT SEND Page 14 of 19

December 12, 2017

“{<message tag>}Please select a device.\nmyPhone\nmyLaptop\nmyPda\n\n”

The first item in the list (“Please select a device.”)

indicates that a list of devices follows and that one of

the devices should be selected. There are three devices

in the list: ”myPhone”, “myLaptop”, and ”myPda”.

The items in the list are separated by newline

characters, indicated as ’\n’ above. The extra ’\n’ at the

end of the string marks the end of the list.

The expected return value is a pointer to a string

containing one of the values from the list. A NULL pointer should be returned in case of error or if none of the

values are appropriate at that point in the test.

The string to be returned will need to be a copy of one of the items in the list. Returning a pointer to the first

character of one of the items in the list will not work since there is additional information (newlines and other items)

following the selection. The copy is subject to the data scoping concerns mentioned earlier. (3.2.4.1, “Scope of the

return value”.)

BLUETOOTH PTS AUTOMATING – USING IMPLICIT SEND Page 15 of 19

December 12, 2017

3.5 Software build requirements

It was mentioned earlier (section 3.1, “Basic information”) that Implicit Send DLLs must be written in C++. A few

additional requirements need to be considered when starting the development of an Implicit Send DLL.

 Microsoft Visual C++ must be used. C++ objects such as std::string are not guaranteed to be implemented the

same way in every compiler. Mixing definitions is a recipe for trouble.

 Microsoft Visual C++ 2008/Visual Studio 2008 must be used for development of a custom Implicit Send DLL.

Subtle runtime issues can occur when mixing different versions of the Visual C++ runtime environment.

In particular, Visual C++ 2010 has been found to produce an Implicit Send DLL that does not work with PTS.

It is possible to build the Implicit Send DLL with Visual Studio 2013 by setting project's Properties >>

Configuration Properties >> General >> Platform Toolset to Visual Studio 2008 (v.90).

 The PTS Team suggests that custom DLLs be built in the “Release” configuration. Data structures and

dynamically allocated memory may be laid out differently between “Debug” and “Release” configurations.

(The “Debug” versions may contain extra elements to assist in the debugging process.) It is rarely a good idea to

mix “Release” and “Debug”.

Note that it is possible to use the Visual Studio Debugger on executables and DLLs that are built in the

“Release” configuration. A few small changes may be needed to the Visual Studio project configuration to

enable this functionality. Please contact PTS Technical Support for more information.

The requirements above are a result of the development environment used by the PTS Team. The Team uses

Microsoft Visual C++ 2013 with the Platform Toolset set to Visual Studio 2008 (v.90). The PTS executables and

DLLs are built in the “Release” configuration.

BLUETOOTH PTS AUTOMATING – USING IMPLICIT SEND Page 16 of 19

December 12, 2017

4 Activating a custom Implicit Send DLL

Once a custom Implicit Send DLL has been created, it is a simple matter to start using it with PTS. The DLL may be

attached to a test suite selected by a PTS project via the Project Settings dialog.

Begin the process by selecting the desired project (test suite) in the Workspace Test Case View window. Right click

on the top level node of the project and select “Settings” from the menu that appears.

At the bottom of the Project Settings dialog is a section labeled “User Defined Implicit Send DLL”. Normally the

box labeled “Use” is unchecked. When this box is unchecked the test suite will use the default Implicit Send DLL

provided by PTS.

BLUETOOTH PTS AUTOMATING – USING IMPLICIT SEND Page 17 of 19

December 12, 2017

Place a check mark in the “Use” box. This will cause the text box and browse button to become active. Use Browse

button (“…”) to locate the custom Implicit Send DLL. After the DLL has been selected, press the OK button to

record the change.

The custom Implicit Send DLL will be used starting with the next test case that is executed in the project.

4.1 Usage notes

 The custom Implicit Send DLL may be disabled at any time by returning to the Project Settings page and

removing the checkmark from the box labeled “Use”.

 The procedure above attaches a custom DLL to one and only project in a single workspace. The process must be

repeated to use the DLL with other projects in the same workspace, or, with the same test suite (project) in a

different workspace.

5 Technical tidbits

The following sections are items of general interest that should be reviewed by anyone who wishes to develop their

own Implicit Send DLL.

5.1 Automatic dismissal of Implicit Send requests

At various points during the execution of a test, the test case implementation can detect that an action requested via

Implicit Send has occurred. When this happens, the test case may attempt to complete the ImplicitSendStyle() or

ImplicitSendPinCode() operation that is in progress.

This most commonly occurs with messages using MMI_Style_Ok_Cancel2. These messages tend to be “transient”,

for example, “Using the IUT, make a connection to the PTS”. For these types of actions, there is no need to require

operator interaction with PTS. The operator can simply take whatever steps are necessary on the IUT to cause the

connection to happen; the test case can then detect the connection and take down the dialog.

BLUETOOTH PTS AUTOMATING – USING IMPLICIT SEND Page 18 of 19

December 12, 2017

The mechanism used to do this is to send simulated button presses to a dialog whose title is “User Action Required”.

This works very well with the default Implicit Send DLL because all the dialogs it displays are titled “User Action

Required”.

This however may not work very well with custom Implicit Send DLLs – especially ones that have no need to create

popup dialogs. The test case will send the simulated button presses, but no one – most specifically the functions in

the custom DLL – will be listening.

This situation may not be as bad as it seems. It’s likely, the IUT also knows that the requested action has taken place

and would normally notify the user of the device. When the user of the device is replaced with an automation test

platform, the platform can detect the situation and notify the custom Implicit Send DLL.

If it turns out that a custom DLL needs to know when the simulated button presses occur, it could create a hidden

window whose title is “User Action Requested”. This would allow the delivery of the simulated button presses to the

custom Implicit Send DLL.

For more information about the simulated button presses, please contact PTS technical support.

5.2 ImplicitSend() function

Earlier versions of PTS used a function called ImplicitSend(). This function has been replaced by

ImplicitSendStyle() and is no longer used by the PTS.

5.3 TSPX_use_implicit_send

Most test suites have a IXIT value named TSPX_use_implicit_send which is used to enable or disable the Implicit

Send functionality. Normally the value of this item is TRUE indicating that Implicit Send is to be used.

Setting the value to FALSE will disable Implicit Send for both user developed DLLs and the PTS default DLL.

The value of TSPX_use_implicit_send should be checked whenever it appears that the Implicit Send functionality is

not working at all.

5.4 Sample source code

The PTS installation has a folder containing source code that may be used as a reference during development of a

custom Implicit Send DLL. The source code itself is the complete source for the default Implicit Send DLL that is

normally used by PTS. A Visual Studio project is included making it possible to build and execute the sample.

Of interest is implicit_send.cpp. In addition to the functions it provides, there are notes for an alternate

implementation that connects to an automated test platform via TCP/IP.

The sample may be found under custom\implicit_send in the PTS installation folder. The default path to this

location is

C:\Program Files [(x86)]\Bluetooth SIG\Bluetooth PTS\SampleCode\implicit_send

5.5 One DLL or many DLLs?

The tag data in the Implicit Send messages makes it possible to use the same DLL for more than one profile since

each message is uniquely identified by <message number>, <currently executing test case>, and <currently active

test suite>. (Section 3.3, “Message tags”.)

BLUETOOTH PTS AUTOMATING – USING IMPLICIT SEND Page 19 of 19

December 12, 2017

It may be convenient to develop one Implicit Send DLL for all uses and use the test suite name in the message tag to

know which profile is requesting assistance. On the other hand, a single DLL may be more complicated to construct

and maintain, suggesting that a custom DLL for each test suite might be more appropriate.

The point to keep in mind is that PTS can support either design decision – developers of custom Implicit Send DLLs

are not locked into one way or the other.

5.6 Hybrid environments

It may be desirable to replace some, but not all, of PTS’s default Implicit Send handling. This is possible by doing

the following:

 Create a custom Implicit Send DLL.

 In the custom DLL, InitImplicitSend() could dynamically load the default DLL using the Windows

LoadLibrary() and GetProcAddress() API functions.

 When a message arrives at ImplicitSendStyle() in the custom DLL, the function could look at the message tag

and decide whether or not it wants to handle the message. If the custom ImplicitSendStyle() does not want to

handle the message, it could call ImplicitSendStyle() in the default DLL using the same parameters.

The return value from the default DLL would then become the return value for the custom DLL.

