£3 Bluetooth

Developer Study Guide

Using BlueZ as a Bluetooth® Mesh Provisioner

Release : 1.4.1
Document Version: 1.4.1

Last updated : 18th December 2020



Contents

Contents
AV A ST [0 ] I 53 (0 1 S 3
O ] 8 o To 1¥ o1 4 o] o I PP O PP P PP PO PPPPPPPRPPPR 4
N e =T =0 [T 1 = SR 4
3. Rebuilding the Kernel fOr BIUBZ........coooveieeiii e 5
3.1 Remote Access Board Through SSH ... 5
3.2 Install Dependencies fOr BIUEZ ... 5
3.3 CheCK-0UL SOUICE COUB ...ooiiiiiiiiiieii ettt e et e e e e e s r e e e e e e e e 5
3.4 Configuring the Kernel ... 5
3.5 BUIldiNg the KerNel ... 9
3.6 Installing the kernel, Modules, and Device Tree BIODS .........cccoeiiiiiiiiiiiiiii e, 9
3.7 Verifying the Kernel ... 9
4. INSTAIIING BIUBZ ... e 10
4.1 JSON-C INSTAATION c.eeiiiiiiiiiiiieeee 10
4.2 Get BIUBZ SOUICE COUR....ciiiiiiiiiiiiii ittt e e e e e e e eeaeeeaaaan 10
4.3 BUild @and INSEAll BIUBZ ........cooiiiiieeeeeee et a e e e 10
4.4 Tell systemd to use the new Bluetooth daemon ... 10
ST e €0 AV =T o 011 o o [N 13
ST o = T 7 N I L PP TSP PP TPPPPPP 13
5.2 PB A DDV e et e et e e e e e et e aeraans 14
Appendix A - meshctl available commands............ccccooiiiiiiiiiiiiii e 17
MENU MaIN COMMANT ST ... 17
Menu config COMMANT [IST ... et e e e e e e e e e e e aeeanees 18
menu ONOff COMMANT TIST ... 19
Appendix B - mesh-cfgclient command list...........cccooiiiiiiiiiiiiic e 20
Main MeNU COMMANT [IST....uuuii i e e e e et s e e e e e e e esaea s e e eaaeeennnes 20

MeNU CONTFIG COMMANT [IST ... 21



Revision History

Version| Date Author Comments

1.0 18t June 2018 | Kai Ren Initial Draft
Bluetooth SIG

11 5% August Kai Ren Upgrade BlueZ installation to v5.50.
2018 Bluetooth SIG
1.2 9th March Kai Ren Updated the name to Developer Study Guide.
2019 Bluetooth SIG| Use the latest Raspberry Pi release instead of main tree.
1.3 26" July 2019 | Kai Ren Add the support for Raspberry Pi 4 and update the kernel to raspberrypi-
Bluetooth kernel 1.20190709-1.
SIG
1.4 16" March Kai Ren Upgrade this guide to support BlueZ v5.54 which adds the new support for PB-
2020 Bluetooth SIG ADV
14.1 18" December| Martin Language changes
2020 Woolley

Bluetooth SIG



https://github.com/raspberrypi/linux/commit/5d63a4595d32a8505590d5fea5c4ec1ca79fd49d
https://github.com/raspberrypi/linux/releases/tag/raspberrypi-kernel_1.20190709-1
https://github.com/raspberrypi/linux/releases/tag/raspberrypi-kernel_1.20190709-1

1. Introduction

BlueZ is the official Linux Bluetoothe protocol stack. From the release notes of BlueZ v5.47:

“This release comes with initial support for it in the form of a new meshctl tool.
Using this tool, it’s possible to provision mesh devices through the GATT
Provisioning Bearer (PB-GATT), as well as communicate with them (e.g. configure
them) using the GATT Proxy protocol.”

This developer study guide explains how to install the latest release of BlueZ on Raspberry Pi and use
BlueZ as a Bluetooth mesh Provisioner.

2. Prerequisite

This study guide has been tested on the following boards, calling them verified boards in this
document:

e Raspberry Pi 2B
e Raspberry Pi 3B
e Raspberry Pi 3B+
e Raspberry Pi 4B

If you have one of above-verified boards, please make sure that you:

¢ Follow this guide to setup your Raspberry Pi

o Check if the operating system on your verified board is ready, and, if not, follow this
quide to set up the software on your Raspberry Pi

e Follow this guide to enable SSH to access the board remotely. The picture below
shows the use of Tera Term on a Windows10 laptop through SSH to access the
board remotely

File Edit Setup Control Window Help
Linux raspberryp1 4.19.57-v71 #1 SMP Sat Jul 27 13:21:16 CST 2019 armv/

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable Taw.

Last login: Sun Jul 28 10:42:57 2019

pi@raspberrypi:~ $ |}

e The board has been issued apt-get update and apt-get upgrade successfully, these
two commands will ensure your board has the latest updates


https://www.raspberrypi.org/documentation/setup/
https://www.raspberrypi.org/documentation/installation/
https://www.raspberrypi.org/documentation/remote-access/ssh/README.md
http://ttssh2.osdn.jp/

3. Rebuilding the Kernel for BlueZ

There are two main methods for building the Raspberry Pi kernel. You can build locally on a Raspberry
Pi, which will take a long time, or you can cross-compile, which is much quicker but requires more
setup. This guide outlines the local-build method.

3.1 Remote Access Board Through SSH
As mentioned in the Prerequisite, you should remote login into the board through SSH.

3.2 Install Dependencies for BlueZ

sudo apt-get install -y git bc libusb-dev libdbus-1-dev libglib2.0-dev libudev-dev libical-dev
libreadline-dev autoconf bison flex libssl-dev

3.3 Check-out Source Code

cd ~
wget https://github.com/raspberrypi/linux/archive/raspberrypi-kernel_1.20200212-1.tar.qz

tar -xvf raspberrypi-kernel_1.20200212-1.tar.gz

3.4 Configuring the kernel

cd ~
cd Jlinux-raspberrypi-kernel_1.20200212-1/

Depending on Raspberry Pi board models, run the following commands alternatively.

o Raspberry Pi 2, Pi 3, Pi 3+, and Compute Module 31 default build configuration

KERNEL=kernel7
make bcm2709_defconfig

make menuconfig

e Raspberry Pi 4

KERNEL=kernel7I
make bcm2711_defconfig

make menuconfig


https://github.com/raspberrypi/linux/archive/raspberrypi-kernel_1.20200212-1.tar.gz

After typing menuconfig, kernel configuration menu will pop up. make menuconfig shows the
descriptions of each feature, gives the user an ability to navigate forwards or backwards directly
between features and adds some dependency checking.

Route and select Cryptographic APl menu:

1 Compute Module 3 haven’t been verified on this document, but theoretically, it shall works.

File Edit Tabs Help

Include CCM support

File Edit Tabs Help




Include CMAC support

File Edit Tabs Help

Include User-space interface for hash algorithms

File Edit Tabs Help




Include User-space interface for symmetric key cipher algorithms

File Edit Tabs Help

Include User-space interface for AEAD cipher algorithms

File Edit Tabs Help

Once you are done making the changes you want, press Escape until you're prompted to save your new
configuration. By default, this will save to .config file. You can save and load configurations by copying
this file around.



3.5 Building the kernel

make -j4 zImage modules dtbs

This process takes a long time, maybe 2 ~ 3 hours.

3.6 Installing the kernel, Modules, and Device Tree Blobs

sudo make modules_install

sudo cp arch/arm/boot/dts/*.dtb /boot/

sudo cp arch/arm/boot/dts/overlays/*.dtb* /boot/overlays/
sudo cp arch/arm/boot/dts/overlays/README /boot/overlays/
sudo cp arch/arm/boot/zimage /boot/SKERNEL.img

sudo reboot

3.7 Verifying the kernel

After the board restart, issue below command
uname -a

In the image below, you can see the build time is on Thu Mar 19 11:17:18 CST 2020. That time and
date were exactly when the kernel was built and it means the kernel building and installation were
successful.

pifraspberrypi

pifiraspberrypi




4. Installing BlueZ

Once the recompiled kernel is setup correctly, you can start to install BlueZ.
4.1 json-c installation

cd ~

waget https://s3.amazonaws.com/json-c_releases/releases/json-c-0.13.tar.gz
tar -xvf json-c-0.13.tar.gz

cd json-c-0.13/

Jconfigure --prefix=/usr --disable-static && make

sudo make install

4.2 Get BlueZ Source Code

cd ~
wget http://www.kernel.org/pub/linux/bluetooth/bluez-5.54.tar.xz

tar -xvf bluez-5.54.tar.xz
cd bluez-5.54/

4.3 Build and Install BlueZ

Jconfigure --enable-mesh --enable-testing --enable-tools --prefix=/usr --mandir=/usr/share/man --
sysconfdir=/etc --localstatedir=/var

sudo make

sudo make install

4.4 Tell systemd to use the new Bluetooth daemon

sudo vi /lib/systemd/system/bluetooth.service

After opening this file, bluetooth.service, make sure the ExecStart line points to your new daemon in
lusr/libexec/bluetooth/bluetoothd, as shown in the screenshot below.


https://s3.amazonaws.com/json-c_releases/releases/json-c-0.13.tar.gz
http://www.kernel.org/pub/linux/bluetooth/bluez-5.54.tar.xz

Hunith

Description
Documentation
ConditionPathIsDirectory

[Service]

Type=d

BusName=

ExecStart=
NotifyAccess
#WatchdogSec=10
#Restart=on-failure

CapabilityBoundingSet
LimitNPROC
ProtectHome=t
ProtectSystem=

[Install]
WantedBy:-
Alias=

“"/1lib/systemd/system/bluetooth.ser\

It’s still not enough. You still need to create a symlink from the old bluetoothd to the new one. First,
rename the old file for backup. Type below command.

sudo cp /usr/lib/bluetooth/bluetoothd /usr/lib/bluetooth/bluetoothd-550.0rig

Create the symlink using the command below and double check the version of bluetoothd, meshctl and
mesh-cfgclient.

sudo In -sf /usr/libexec/bluetooth/bluetoothd /usr/lib/bluetooth/bluetoothd
sudo systemctl daemon-reload

cd ~/.config/

mkdir meshctl

cp ~/bluez-5.54/tools/mesh-gatt/local_node.json ~/.config/meshctl/

cp ~/bluez-5.54/tools/mesh-gatt/prov_db.json ~/.config/meshctl/
bluetoothd -v

meshctl -v
mesh-cfgclient -v

As shown in the screenshot below, bluetoothd, meshctl and mesh-cfgclient are all v5.54.



Cheers! BlueZ installation is successful. 2

pi@raspberrypi: bluetoothd -v
5.54

pi@raspberrypi: meshctl -v
meshctl: 5.54

pi@raspberrypi: mesh-cfgclient -v
mesh-cfgclient: 5.54

pi@raspberrypi: []

pi@raspberrypi: bluetoothd -v
5.54

pi@raspberrypi: meshctl -v
meshctl: 5.54

pi@raspberrypi: mesh-cfgclient -v
mesh-cfgclient: 5.54

pi@raspberrypi: D

2 About upgrading bluetoothd, reference this article,
https://raspberrypi.stackexchange.com/questions/66540/installing-bluez-5-44-onto-

raspbian



https://raspberrypi.stackexchange.com/questions/66540/installing-bluez-5-44-onto-raspbian
https://raspberrypi.stackexchange.com/questions/66540/installing-bluez-5-44-onto-raspbian

5. Provisioning

This section includes the instructions that:

e how to use meshctl to provision a device over PB-GATT;
¢ how to use mesh-cfgclient to provision an unprovisioned device over PB-ADV;,

5.2 PB-GATT
meshctl is a tool that provides Provisioner functionality and it's over PB-GATT.

Launch meshctl
cd ~

meshctl

pi@raspberrypi: cd ~
pi@raspberrypi: meshctl
Waiting to connect to bluetoothd...Reading prov_db.json and local node.json from

/home/pi/.config/meshctl directory

# []

Discover unprovisioned devices

Start the process of discovering unprovisioned devices.

discover-unprovisioned <on/off>

<on/off> mean start or stop discovering unprovisioned device.
When an unprovisioned device is found, the message will pop-up as below the picture shown, the
“Device UUID” in the red box will be used in the next section.

# discover-unprovisioned on
SetDiscoveryFilter success
Discovery started
Adapter property changed
[CHG] Controller B8:27:EB:27:19:1B Discovering: yes

Mesh Provisioning Seriice (AAAA1277_AAAA_10A0A_RAAN_ARR05f9b34fh)
Device UUID: 53696c6162734465762dac3693570b00O

00B: 0000
[NEW] Device 00:0B:57:93:36:AC 00-0B-57-93-36-AC
#[]

You also can stop the process of discovering unprovisioned devices by using the below command.

discover-unprovisioned off



Provision
Copy the “Device UUID” and paste it after the provision command, as shown below, to initiate the
provisioning process.

provision <Device UUID>

If provisioning is successful, you can find the primary element address in the red box of “Composition
data for node XXXX”, XXXX is the primary element.

GATT-RX: 00 f4 f6 92 03 b8 2a 74 80 5d 52 bf &9 ff 54 8e
GATT-RX: 25 cf Od c@ 69 01 4c ae 22 6e 2a 02 48 a7
GATT-RX: 09 f4 8e 3a 04 dd 63 10 af 2d 7d ef 4b 85 14 5b
GATT-RX: h? 47 e1 da
Composition data for node 0100 ({
g TeZIY".,
"pid®: " 1ehe",

"vidr 1238,

"crpl":"6620",

"features":{
"relay":true,
"proxy":true,
"friend":false,

Configuration
Since provisioning is completed, it’s time to perform model configuration. Type in below command to
switch menu config submenu.

menu config

Select the target device to perform the model configuration.

target <primary_element_address>

Usually, model configuration operations include:

e add AppKey for the node
¢ bind element index, AppKey and target model
e publish/subscribe setup

Please refer to the section of “meshcitl available commands” to get the full commands list.

5.2 PB-ADV
mesh-cfgclient is a tool that provides Provisioner functionality and it's over PB-ADV.
Launch mesh-cfgclient

On the RPI, we need to have full ownership of the controller, so stop bluetoothd: Stop bluetoothd and
start bluetooth-meshd.



sudo systemctl stop bluetooth
sudo ~/bluez-5.54/mesh/bluetooth-meshd -nd

pi@raspberrypi: sudo ~/bluez-5.54/mesh/bluetooth-meshd -nd
D-Bus ready

Request name success

Loading node configuration from /var/lib/bluetooth/mesh
mesh/mesh-mgmt.c:mesh_mgmt_1list() send read index_list
mesh/mesh.c:mesh_init() io ©x12da3c8

mesh/mesh-mgmt.c:read_index_list_cb() Number of controllers: 1
mesh/mesh-mgmt.c:read_info_cb() hci © status 0x00
mesh/mesh-mgmt.c:read_info_cb() settings: supp 0001bfff curr 00000adO
mesh/mesh-io-generic.c:hci_init() Started mesh on hci ©

Added Network Interface on /org/bluez/mesh

Hci dev 0000 removed

i

Open a new SSH and make it connect to Raspberry Pi board, type below commands and you will see
mesh-cfgclient starts to work.

cd ~

mesh-cfgclient

spberrypi: cd ~
pi@raspberrypi: mesh-cfgclient

Warning: config file "/home/pi/.config/meshcfg/config_db.json" not found
# []

When you run mesh-cfgclient for the first time, the tool will notify you of a warning:
“Warning: config file “/home/pi/.config/meshcfg/config_db.json” not found”.
Use the below command to create a new mesh networks.

create

Add AppKey and NetKey

appkey-create 0 0

Discover the unprovisioned device

discover-unprovisioned <on/off> [seconds]

<on/off> mean start or stop discovering unprovisioned device.

3 After that, no need to issue this create command again until you want to create a new mesh network.



[seconds] means how many seconds the discovering process is going on.
When an unprovisioned device is found, the message will pop-up as below picture shown, the “UUID” in
the red box will be used in the next section.

# discover-unprovisioned on 120
Unprovisioned scan started
Scan result:

rssi =59
UUID =/53696C6162734465762DAC3693570B00
#

Provision
Copy the “UUID” and paste it after the provision command, as shown below, to initiate the provisioning
process.

provision <UUID>

When provisioning is completed, you can find the primary element address in the red box of the below
picture.

# provision 53696C6162734465762DAC3693570B00O
Provisioning started
Assign addresses for 1 elements
Provisioning done:
Mesh node:

UUID = 5369ACA162734465762DAC3693570B00O
primary O0aa
elements = 1

# []

Configuration
Since provisioning is completed, it’s time to perform model configuration. Type in below command to
switch menu config submenu.

menu config

Select the target device to perform the model configuration.

target <primary_element_address>

Usually, model configuration operations include:

e add AppKey for the node
e bind element index, AppKey, and target model
e publish/subscribe setup

Please refer to the section of “mesh-cfgclient available commands” to get the full commands list.




Appendix A - meshctl available commands

This section lists all the commands meshctl supports, meshctl has 3 command menus:

e main menu
e menu config
e menu onoff

menu main command list

config Configuration Model Submenu

onoff On/Off Model Submenu

list List available controllers

show [ctrl] Controller information

select <ctrl> Select default controller

security [0(low)/1(medium)/2(high)] Display or change provision security level
info [dev] Device information

connect [net_idx] [dst] Connect to mesh network or node on network
discover-unprovisioned <on/off> Look for devices to provision

provision <uuid> Initiate provisioning

power <on/off> Set controller power

disconnect [dev] Disconnect device

mesh-info Mesh networkinfo (provisioner)

local-info Local mesh node info

menu <name> Select submenu

version Display version

quit Quit program

exit Quit program

help Display help about this program

export Print environment variables



menu config command list

target <unicast>

composition-get [page_num]

netkey-add <net_idx>

netkey-del <net_idx>

appkey-add <app_idx>

appkey-del <app_idx>

bind <ele_idx> <app_idx> <mod_id> [cid]
mod-appidx-get <ele_addr> <model id>
ttl-set <ttl>

ttl-get

pub-set <ele_addr> <pub_addr> <app_idx>
<per (step|res)> <re-xmt (cnt|per)> <mod id>
[cid]

pub-get <ele_addr> <model>

proxy-set <proxy>
proxy-get
ident-set <net_idx> <state>

ident-get <net_idx>

beacon-set <state>

beacon-get

relay-set <relay> <rexmt count> <rexmt
steps>

relay-get

hb-pub-set <pub_addr> <count> <period>
<ttl> <features> <net_idx>

hb-pub-get
hb-sub-set <src_addr> <dst_addr> <period>

hb-sub-get

Set target node to configure
Get composition data

Add network key

Delete network key

Add application key

Delete application key

Bind app key to a model
Get model app_idx

Set default TTL

Get default TTL

Set publication

Get publication

Set proxy state

Get proxy state

Set node identity state
Get node identity stat

Set node identity state

Get node beacon state

Set relay

Get relay
Set heartbeat publish

Get heartbeat publish
Set heartbeat subscribe

Get heartbeat subscribe



sub-add <ele_addr> <sub_addr> <model id>

sub-get <ele_addr> <model id>
node-reset

back

version

quit

exit

help

export

menu onoff command list

Add subscription

Get subscription

Reset a node and remove it from network
Return to main menu

Display version

Quit program

Quit program

Display help about this program

Print environment variables

target <unicast>
get
onoff <0/1>

back
version
quit
exit
help

export

Set node to configure
Get ON/OFF status
Send "SET ON/OFF" command

Return to main menu

Display version

Quit program

Quit program

Display help about this program

Print environment variables



Appendix B - mesh-cfgclient command list

This section lists all the commands mesh-cfgclient supports, mesh-cfgclient has 2 command menus:

e main menu
e menu config

main menu command list

config

create [unicast_range_low]

discover-unprovisioned <on/off> [seconds]

appkey-create <net_idx> <app_idx>

appkey-import <net_idx> <app_idx> <key>

appkey-update <app_idx>
appkey-delete <app_idx>

subnet-create <net_idx>
subnet-import <net_idx> <key>
subnet-update <net_idx>
subnet-delete <net_idx>
subnet-set-phase <net_idx> <phase>
list-unprovisioned

provision <uuid>

node-import <uuid> <net_idx> <primary>
<ele_count> <dev_key>

node-delete <primary> <ele_count>
list-nodes

keys

menu <name>

version

quit

exit

help

export

Configuration Model Submenu

Create new mesh network with one initial
node

Look for devices to provision
Create a new local AppKey
Import a new local AppKey
Update local AppKey

Delete local AppKey

Create a new local subnet (NetKey)
Import a new local subnet (NetKey)
Update local subnet (NetKey)
Delete local subnet (NetKey)

Set subnet (NetKey) phase

List unprovisioned devices

Initiate provisioning

Import an externally provisioned remote
node

Delete a remote node

List remote mesh nodes

List available keys

Select submenu

Display version

Quit program

Quit program

Display help about this program

Print environment variables



menu config command list

target <unicast> Set target node to configure
timeout <seconds> Set response timeout (seconds)
composition-get [page_num] Get composition data

netkey-add <net_idx> Add NetKey

netkey-update <net_idx> Update NetKey

netkey-del <net_idx> Delete NetKey

netkey-get List NetKeys known to the node
appkey-add <app_idx> Add AppKey

appkey-update <app_idx> Add AppKey

appkey-del <app_idx> Delete AppKey

appkey-get <net_idx> List AppKeys bound to the NetKey

bind <ele_addr> <app_idx> <model _id> Bind AppKey to a model
[vendor_id]

unbind <ele_addr> <app_idx> <model_id> Remove AppKey from a model
[vendor_id]

mod-appidx-get <ele_addr> <model_id> Get model app_idx
[vendor_id]

ttl-set <ttl> Set default TTL

ttl-get Get default TTL

pub-set <ele_addr> <pub_addr> <app_idx> <per
(step|res)> <re-xmt (cnt|per)> <model_id>
[vendor_id]

pub-get <ele_addr> <model_id> [vendor_id]

proxy-set <proxy>

proxy-get

ident-set <net_idx> <state>
ident-get <net_idx>
beacon-set <state>
beacon-get

relay-set <re|ay> <rexmt count> <rexmt steps>

Set publication

Get publication

Set proxy state

Get proxy state

Set node identity state
Get node identity state
Set node identity state
Get node beacon state

Set relay



relay-get
friend-set <state>

friend-get
network-transmit-get

network-transmit-set <count> <steps>

hb-pub-set <pub_addr> <count> <period> <ttl>

<features> <net_idx>

hb-pub-get

hb-sub-set <src_addr> <dst_addr> <period>
hb-sub-get

virt-add

group-list

sub-add <ele_addr> <sub_addr> <model_id>
[vendor]

sub-del <ele_addr> <sub_addr> <model_id>
[vendor]

sub-wrt <ele_addr> <sub_addr> <model_id>
[vendor]

sub-del-all <ele_addr> <model_id> [vendor]
sub-get <ele_addr> <model_id> [vendor]
node-reset

back

version

quit

exit

help

export

Get relay
Set friend state

Get friend state

Get network transmit state
Set network transmit state

Set heartbeat publish

Get heartbeat publish

Set heartbeat subscribe

Get heartbeat subscribe
Generate and add a virtual label

Display existing group addresses and virtual
labels

Add subscription

Delete subscription

Overwrite subscription

Delete subscription

Get subscription

Reset a node and remove it from network
Return to main menu

Display version

Quit program

Quit program

Display help about this program

Print environment variables



