
Step-by-Step Guide
How to Deploy BlueZ v5.50 on Raspberry Pi 3
and Use It
Part 2 — Provisioning

BlueZ is the official Linux Bluetooth® protocol stack. As stated in the BlueZ v5.47 release notes, “this release
comes with initial support for it in the form of a new meshctl tool. Using this tool, it’s possible to provision
mesh devices through the GATT Provisioning Bearer (PB-GATT), as well as communicate with them (e.g.
configure them) using the GATT Proxy protocol.” This tutorial shows you how to build a new (unprovisioned)
device, provisioned by meshctl on Raspberry Pi3 (R Pi3) board.

By the end of this step-by-step guide, you will be able to issue a meshctl command in the folder ~/bluez-5.50/
mesh/, run the meshctl utility, and know how to use the meshctl utility to provision a new (unprovisioned)
device and manage the network.

To learn the steps for installing BlueZ v5.50 on R Pi3, see Part 1 of this guide, Deployment.

Author: Kai Ren

Version: 1.0

Revision Date: 12 October 2018

http://www.bluez.org/release-of-bluez-5-50/
https://www.bluetooth.com/develop-with-bluetooth/build/developer-kits?utm_campaign=developer&utm_source=internal&utm_medium=blog&utm_content=mesh-study-guide-update&_ga=2.1964534.635609003.1539206614-140207107.1527781754

2

Revision History

Version Date Author Changes

1.0 2 October 2018 Kai Ren Initial Version

3

table of
contents
1.0	 Prerequisite . 4

	 1.1	 Sample Project	 4

2.0	 Install BlueZ v5.49. 5

	 2.1	 Open prov_db.json	 5

	 2.2	 Edit prov_db.json	 5

3.0	 Provisioning . 8

	 3.1	 Commands Available on Main Menu	 8

	 3.2	 Commands Available on Main Menu 	 8

	 3.3	 Provision	 9

	 3.4	 Composition	 10

4.0 	 Model Configuration. 12

	 4.1	 Configuration	 12

5.0	 Verification. 14

6.0 Summary . 15

4

1.0 Prerequisite
Set Up the Development Environment

Before building a new device, you should follow this guide to setup the dev environment.	

	 •	 Windows

	 •	 macOS

	 •	 Linux

Sample Project

This sample project illustrates how to use meshctl to provision and model config the device: this
project is a sample from the Zephyr Project.

Please follow the sample project webpage to build and flash the firmware on the target board
(nRF52840 DK). Then, open a serial terminal like Putty or Tera Term to monitor out-of-band (OOB)
output from the target board. Select the correct serial port on your host computer, the serial terminal
setting is:

	 •	 Baud rate: 115200

	 •	 Data bit: 8

	 •	 Parity: none

	 •	 Stop bit: 1

When you press the reset button on the board, the serial terminal should look like the image below.

For any other project which includes a GenericOnOff Server model and/or a GenericOnOff Client
model, you can use this guide to provision and model config the device as well.

back to contents

https://docs.zephyrproject.org/latest/getting_started/installation_win.html
https://docs.zephyrproject.org/latest/getting_started/installation_mac.html
https://docs.zephyrproject.org/latest/getting_started/installation_linux.html
https://docs.zephyrproject.org/latest/samples/boards/nrf52/mesh/onoff-app/README.html
https://www.zephyrproject.org/
https://docs.zephyrproject.org/latest/samples/boards/nrf52/mesh/onoff-app/README.html
https://www.putty.org/
https://ttssh2.osdn.jp/index.html.en

2.0 Provisioner Configuration
meshctl is a tool in BlueZ v5.50 that works as a provisioner and distributes provisioning data (unicast
address, NetKey, key index, and IV Index) to new, unprovisioned devices; with it, users can configure
provisioning data by themselves. For example, change NetKey or IV Index, editing a json file on BlueZ
can make it happen.

Open prov_db.json

Access the folder ./bluez-5.50/mesh/ and use the editor you would like to use to open prov_db.json.
For this tutorial, we used vi.

Edit prov_db.json

After opening prov_db.json, you should see:

If you want to change the IV Index setting, edit at line 4 as shown in the image below.

“IVindex”: 5	#change IV Index, current setting is 5

5

back to contents

6

If you want to change the NetKey setting, edit at line 6 as shown in the image below.

“netKeys”:[

 {

 “index”:0, 	 #change netkey index, current setting is 0

 “keyRefresh”:0,			

 “key”:”18eed9c2a56add85049ffc3c59ad0e12”	 #change netkey

 }

],

If you want to change the AppKey setting, edit at line 13 as shown in the image below.

“appKeys”:[

 {

 “index”:0,	 #change AppKey index, current setting is 0

 “boundNetKey”:0,

 “key”:”F30AC76210160E03F2D8B4F1CF4510E2”	#change AppKey0

 },

 {

 “index”:1,	 #change AppKey index, current setting is 1

 “boundNetKey”:0,

 “key”:”F30AC76210160E03F2D8B4F1CF4510E2”	#change AppKey1

 }

],

back to contents

7

If you want to change the Unicast Address pool, edit at line 29 as shown in the image below.

“allocatedUnicastRange”:[

 {

 “lowAddress”:”0100”, 	 #head of unicast address poll

 “highAddress”:”7fff”	 #tail of unicast address poll

 }

]

back to contents

8

3.0 Provisioning
Commands Available on Main Menu

After reading Part 1, you should know how to launch meshctl. When meshctl is foreground, type help
to list main menu commands as shown below.

From the image above, you can see that every command has a description, and this guide shows you
a few examples.

Main Menu Commands Description
discover-unprovisioned <on/off> Look for devices to provision

provision <uuid> Initiate provisioning

disconnect <dev> Disconnect device

Discover an Unprovisioned Device

To discover nearby unprovisioned devices, type in the command below.

discover-unprovisioned on

back to contents

https://www.bluetooth.com/~/media/files/developer/t1804_how%20to%20set%20up%20bluez_lfc_final.ashx?la=en

9

The device UUID is 6bebf114000000000000000000000000. The endian is LSB to MSB.

Provision

Copy the device UUID and paste it after the provision command, as shown below, to initiate the
provision process.

provision 6bebf114000000000000000000000000 #paste the target device UUID on your own

After hitting the Enter key on your keyboard, you will see that the provisioning process is initiating, as
shown in the image below.

Next, meshctl will ask you to type the OOB output value. This value can be obtained on the serial
terminal. Please type the OOB output value as shown in the example below. You can see that the
current OOB output value on serial terminal is FSQR3G.

If the OOB output value is correct, meshctl will move forward and reach the final step: Composition
Data (details about Composition Data refer to Mesh Profile Specification v1.0, Section 4.2.1) as shown
in the image below. This means the provisioning process was successful and the Provisioner got
Composition Data from a just-provisioned node.

back to contents

https://www.bluetooth.com/specifications/mesh-specifications

10

Composition

After interpreting the Composition Data, the information means:

	 •	 cid, company identifier of the node: 0x05f1

	 •	 pid, vendor-assigned product identifier of the node: 0x0000

	 •	 vid, vendor-assigned product version identifier of the node: 0x0000

	 •	 crpl, the minimum number of replay protection list entries in a device: 0x000a

	 •	 features:

		 o	 relay: enabled;

		 o	 proxy: enabled;

		 o	 friend: disable;

		 o	 low power node: disable

back to contents

11

element model model id unicast address
(element address)

element index

Primary
element

Configuration server

Configuration client

Health server

GenericOnOff Server

GenericOnOff Client

0x0000

0x0001

0x0002

0x1000

0x1001

0x011b 0

Secondary
element

GenericOnOff Server

GenericOnOff Client

0x1000

0x1001

0x011c 1

Secondary
element

GenericOnOff Server 0x1000 0x011d 2

Secondary
element

GenericOnOff Server

GenericOnOff Client

0x1000

0x1001

0x011e 3

With the information above, you can start the model configuration.

back to contents

12

4.0 Model Configuration
Configuration

Now that provisioning is complete, it is time to perform model configuration. Type in the command
below on main menu.

 menu config

meshctl will go to the menu config submenu as shown in the image below.

The menu config screenshot above shows you how it supports the operations of Bluetooth mesh
configuration and management like NetKey, AppKey, subscribe, publish, etc. Next, you will learn how
to use some of these operations.

target 011b					 # set primary element, 0x011b, to config

appkey-add 1				 # add AppKey

bind 0 1 1000				 # bind AppKey with certain model in certain element

sub-add 011b c000 1000		 # add subscribe group address for certain model in
							 certain element

bind 0 1 1001 			 # bind AppKey 1 to button 2 on element 1 (unicast 0101)

pub-set 010f c000 1 0 0 1001 	 # publish button 2 to group address c000

back to contents

13

The table below explains the commands that were used.

Command Description
target 011b target <unicast>

 <unicast> -- unicast address

Set the target node to configure, 011b is the unicast address of the
primary element.

appkey-add 1 appkey-add <app_idx>

 <app_idx> -- AppKey index which points the key stored in prov_
db.json, please refer to Edit prov_db.json.

bind 0 1 1000 bind <ele_idx> <app_idx> <mod_id> [cid]

 <ele_idx> -- element index, please refer to section Composition

 <app_idx> -- AppKey index which points the key stored in
prov_db.json

 <mod id> -- model id, please refer to section Composition and
Mesh Model Specification v1.0

 <cid> -- optional

sub-add 010d c000 1000 sub-add <ele_addr> <sub_addr > <mod id>

 <ele_addr> -- element address a.k.a unicast address, please refer
to section Composition

 <sub_addr> -- group address to subscribe, range: 0xc000 ~ 0xffff

 <mod id> -- model id, please refer to section Composition and
Mesh Model Specification v1.0

pus-set 011b c000 1 0 0
1001

sub-add <ele_addr> <sub_addr > <mod id>

 <ele_addr> -- element address a.k.a unicast address, please refer
to section Composition

 <sub_addr> -- group address to subscribe, range: 0xc000 ~ 0xffff

 <mod id> -- model id, please refer to section Composition and
Mesh Model Specification v1.0

back to contents

https://www.bluetooth.com/specifications/mesh-specifications
https://www.bluetooth.com/specifications/mesh-specifications
https://www.bluetooth.com/specifications/mesh-specifications

14

5.0 Verification
This section shows you how to use the command below to verify that the GenericOnOffServer model
and GenericOnOffClient model are working.

Please type below commands on meshctl.

back

menu onoff

target 011b

onoff 1	 #turn LED1 on

onoff 0	 #turn LED1 off

get	#get LED1’s status

Command Description
back Back to main menu.

menu onoff Go to “menu onoff” menu.

target 011b target <unicast>

 <unicast> -- unicast address

Set the target node to configure, 011b is the unicast address of the primary
element

onoff x onoff <0/1> -- send “SET ON/OFF” command.

get get – Get ON/OFF status.

Meanwhile, you also can use Button 1 on the board to control LED1 on or off: single click to turn.

back to contents

15

6.0 Summary
After following these steps, you may find that there are 4 LEDs and 4 buttons on the board, as well
as 4 elements which were assigned the unicast addresses from 0x011b to 0x011e, but here we just
configure primary element, 0x011b. You should be able to configure the last three elements and
models on your own.

back to contents

