
3 Things to Know
Before Choosing Your

Bluetooth Mesh
Hardware Platform

Author: Kai Ren

Version: 1.0.1

Revision Date: 9 December 2020

bluetooth.com | 2

Revision History

Version Date Author Changes

1.0 August 2018 Kai Ren Initial Version

1.0.1 9 November 2020 Martin Woolley Language Changes

http://www.bluez.org/release-of-bluez-5-47/

bluetooth.com | 3

Table of Contents
1.0 Introduction . 4

2.0 Architecture. 5

	 2.1 Single vs Dual Architectures. 5

	 2.2 Single Chip/Module. 5
		 Hardware. 5
		 Software/Firmware . 6
		 Cost. 6
		 Flexibility. 6
	 2.3 Dual Chip/Module . 6
		 Hardware. 7
		 Firmware. 7
		 Flexibility. 8

3.0 Memory . 9

	 3.1 RAM . 9
		 RAM and Friendship. 9

	 3.2 Program Memory. 10

	 3.3 Non-Volatile Memory. 13

4.0 Lowering Power Consumption. 14

	 4.1 Lowering Power Consumption in an Embedded Design 14

	 4.2 Bearer Layer Power Consumption. 14

	 4.3 Low Power Feature. 16

	 4.4 Low Power Node Transition . 16

	 4.5 Low Power Considerations . 17

5.0 Building a Solid Knowledge Base . 18

https://www.bluetooth.com/

bluetooth.com | 4

1.0 back to contents

1.0 Introduction
It has been several months since the Bluetooth Special Interest Group (SIG) released the Bluetooth
mesh specifications. In that time, we have participated in a number of exhibitions, events, and
conferences, including Bluetooth Asia 2017 in Shenzhen and CEATEC JAPAN 2017 in Tokyo, where
we got a chance to meet with a wide range of developers and engineers. Many of them asked the
same question: How do I choose the right Bluetooth mesh hardware platform for my product or
prototype?

There are hundreds of Bluetooth® Low Energy (LE) chips on the market from a variety of module
suppliers, and it is easy to order them from manufacturers or distributors. With the increasing
adoption of Bluetooth mesh by Bluetooth member companies, the market will soon have hundreds of
Bluetooth mesh hardware platforms that developers and engineers can choose from.

However, with the release of the Bluetooth mesh specification, there are a lot of new concepts and
technical terms for developers and engineers to understand. This paper provides some tips and
guidance for selecting the right architecture, memory, and power consumption strategy to ensure
your Bluetooth mesh solution aligns with your specific product requirements.However, with the
release of the Bluetooth mesh specification, there are a lot of new concepts and technical terms for
developers and engineers to understand. This paper provides some tips and guidance for selecting
the right architecture, memory, and power consumption strategy to ensure your Bluetooth mesh
solution aligns with your specific product requirements.

However, with the release of the Bluetooth mesh specification, there are a lot of new concepts
and technical terms for developers and engineers to understand. This paper provides

some tips and guidance for selecting the right architecture, memory, and power
consumption strategy to ensure your Bluetooth mesh solution aligns with our

specific product requirements.

https://www.bluetooth.com/
https://www.bluetooth.com/specifications/mesh-specifications?utm_campaign=mesh&utm_source=bluetooth&utm_medium=web&utm_term=paper&utm_content=paper-mesh-hdwr-pltfrm-link
https://www.bluetooth.com/specifications/mesh-specifications?utm_campaign=mesh&utm_source=bluetooth&utm_medium=web&utm_term=paper&utm_content=paper-mesh-hdwr-pltfrm-link

2.0 back to contents

bluetooth.com | 5

2.0 Architecture
The first step of an embedded system design is to select a suitable architecture to meet the system
requirements or engineering target specifications. Different architectures can have various benefits
and limitations. In this paper, we divided the architecture into two types: single or dual architecture.

2.1 Single vs Dual Architectures
For a Bluetooth mesh architecture (even for a non-mesh Bluetooth LE solution) there are two
common architectures to choose from (shown in Figure 1): single and dual chip/module architecture.
The single chip/module hardware platform relies on one chip or module to deal with all tasks and
system requirements. The dual chip/module hardware platform uses one host microcontroller unit
(MCU) plus a Bluetooth mesh co-processor. The co-processor is a dedicated part for Bluetooth mesh
communication.

2.2 Single Chip/Module
As the name suggests, single chip implies that the application on this system is just running
on a single chip or module. No extra processor unit is needed to help with computing and task
scheduling; sometimes this is called an all-in-one solution.

Hardware
As for chip and module, especially from a hardware perspective, there are some design differences
between the single and dual chip/module hardware platform.

A single chip usually doesn’t include a
crystal oscillator, power-up circuit, RF (radio
frequency) coupling, and antenna, making
it necessary for you to design those circuits
yourself and add a custom designed button,
LED, etc. RF circuit design is difficult and
the designer should have a corresponding
background. Ideally, you or someone on your
team should be an expert at this. Otherwise,
you could be facing a potential barrier.

With a single module, the vendor may help you complete the RF circuit, RF coupling, chip/
PCB/external antenna, crystal oscillator circuit, and other necessary components needed to

make the module work. As a developer or engineer, you need to mount this module on a
motherboard, connect VCC and GND to the corresponding pins (caution: don’t get them

wrong or it may smoke), power them up, and add some customized components like a
button and LED — then you are done.

Single
Chip/Module

Dual Chip/Module

Host MCU Bluetooth
Co-Processor

Figure 1 -Architecture comparison: single vs dual

https://www.bluetooth.com/

Software/Firmware
Regardless of whether you are using a single chip or module, you need to take part in the firmware
design, as you need to implement your application on the
chip/module. Alternatively, you can outsource the firmware development to a contractor or system
integration company.

Cost
In theory, a single-chip solution should be cheaper than a single module because a module vendor
will charge a design and component fee. However, because the quality of chips and modules can
differ, the cost may vary. It is important to get quotes from different vendors before making your

choice and shop around for the best deal.

Flexibility
When using a single-chip solution, regardless of hardware and firmware, you manage all the design
for your application and have greater flexibility than you would with a module. For example, if there
is a bug on the antenna or in the firmware, you can fix it as soon as possible since you do not need
to wait for a response from your module vendor.

2.3 Dual Chip/Module
With this platform, there are two parts: the host MCU and the Bluetooth mesh co-processor,

as shown in Figure 2.

2.0 back to contents

bluetooth.com | 6

Host MCU

LCD
Screen

Sensor Vibration
Battery
Monitor

Other
Functions

Interrupt
Handler

LCD
Flashing Button

Bluetooth
mesh
Serial

Protocol
Parser

Bluetooth Mesh Chip/Module

Application, Serial Protocol

Host

Controller

Bluetooth Stack

Host Controller Interface (HCI)

Serial Interface

Asynchronous

Event

Figure 2 – Dual chip/module architecture

http://www.bluez.org/release-of-bluez-5-47/

2.0 back to contents

bluetooth.com | 7

Hardware
Throughout the process of embedded system design, the technical requirements can be complex,
such as with handheld or portable instruments or meters, automatic control management systems,
smart home gateways, etc. In these system designs, the functional
requirements not only include wireless communication, like Bluetooth
mesh, but also include key/button scan, LCD display driver, LED light
flashing, buzzer PWM driver, vibrator driver, power management
(especially in battery-powered equipment), sensor signal acquisition
and processing, and other wireless communication technology
support. For such a complex system, if the Bluetooth mesh function
module is independent, such as a separated network co-processor
(Bluetooth mesh co-processor), it is helpful not only for maintaining a
modular system, but also for software/firmware debugging.

As shown in Figure 2, the host MCU has an interface to communicate with the Bluetooth mesh
module. The interface can be a UART (Universal Asynchronous Receiver/Transmitter) or another
serial communication protocol, such as SPI (Serial Peripheral Interface). This interface can be used
for the interaction of control commands and data stream between the Bluetooth mesh network
co-processor and the host MCU. The host MCU can send commands to the co-processor through
the interface to control the co-processor’s behavior in the network like provisioning, configuration,
message transmission, checking network status and network information, and so on. Meanwhile,
the co-processor can also be used to notify the host MCU by some asynchronous events, such as
receiving message and network key refreshment.

Firmware
For dual chips/modules, the firmware on the host MCU must be designed by developers and
engineers because the application on the host MCU is customized.

For example, different instruments have different vibration frequencies or LED flashing durations.
You can migrate and reuse source code from other designs.

For example, you can use LCD driver source code from some open source repositories, but it
is very hard to find a mature and existing hardware platform in the market which has the same
functionalities that meet your host MCU’s requirement. Please note, the host MCU should

implement the serial protocol shown in Figure 2 because the host MCU needs to use this
protocol to communicate with the Bluetooth mesh co-processor. In other words, you need

to write code on the host MCU.

http://www.bluez.org/release-of-bluez-5-47/

2.0 back to contents

bluetooth.com | 8

Flexibility
The Bluetooth mesh co-processor is more flexible, giving you two choices: a Bluetooth chip/module
with Bluetooth mesh functionality or a mature module.

Selecting a Bluetooth chip/module with Bluetooth mesh functionality allows you to define
the serial protocol for serial communication between the host MCU and the co-processor. The
commands set over the serial protocol can be an AT command set or any private command set you
would like to use, then program the firmware following the serial protocol you selected or defined.
It seems complex, but the advantage is that you control and manage all software/firmware; it is easy
to trace and debug if there is any abnormal phenomenon on the co-processor.

With a mature module, you can take advantage of
module vendors that provide a total solution; one
that not only includes the module, but also includes
the firmware that combines the serial protocol on
the module. You will need a serial protocol user
guide or application note to design firmware on the
host MCU to interact with the module and make
the Bluetooth mesh co-processor perform to your
specifications. With a mature module, you need
to take care of the firmware on the host MCU.
The coding load is less than if you had gone with a

Bluetooth chip/module with Bluetooth mesh functionality, but if there is a bug in the co-processor,
you cannot fix it unless the module vendor releases the patches. So, if you select this option, you
need to carefully evaluate the module.

A Bluetooth chip/module with
Bluetooth mesh functionality is
suitable for complex embedded
system design and allows you
to define your own private
serial protocol between the host
MCUand the mesh co-processor.

http://www.bluez.org/release-of-bluez-5-47/

3.0
3.0 Memory
When evaluating options for a Bluetooth mesh hardware platform, it is important to estimate the
impact of memory consumption on your network configuration.

A main function of an MCU is data information processing. To deal with the data, the MCU needs
some containers to store this data. We call these containers memory. A specified embedded system
design, like Bluetooth mesh, follows this principle, but there are some special cases.

3.1 RAM
In an MCU, RAM (Random Access Memory) is mainly used
to store various kinds of input/output data, intermediate
calculation results, global variables and arrays, C function
parameters that are passed into a function, and stack/heap.
Its storage unit can be read or rewritten based on specific
needs. However, RAM can only be used to temporarily store
programs and data; once the power is off or should a power outage occur, the data in RAM is lost.

RAM and Friendship
RAM is important to an MCU and especially important to a Bluetooth mesh network running on
the MCU. In the embedded design of a Bluetooth mesh network, one thing that may impact RAM
is friendship. Friendship is the ability to help a node supporting the low power feature operate
efficiently. A node that supports the friend feature, and has this feature enabled, is known as a
Friend Node. The Friend Node stores messages destined for the Low Power Node (LPN) and only
delivers them when the Low Power Node polls the Friend Node. The relationship between the
Friend Node and the Low Power Node is known as Friendship. The Friend Node stores messages for
its Low Power Node, in the RAM. The Friend Node needs to allocate an area in RAM to store those
messages. Meanwhile, three factors influence RAM consumption:

 	 ⋅	 LPNCount: How many Low Power Nodes the Friend Node supports

	 ⋅	 bufferCount: For each Low Power Node, how many messages can a

		 Friend Node buffer for this Low Power Node

	 ⋅	 bufferLength: For each message, how many bytes should it allocate

With these three key factors, it is easy to figure out the number of bytes of RAM consumed by a
Friend Node in friendship.

RAM consumption = LPNCount * bufferCount * bufferLength

With this consumption, plus RAM consumed by the Bluetooth mesh stack and the
customized application, developers can estimate RAM size.

back to contents

bluetooth.com | 9

The advantage of flash is that it
not only retains its content even
while power is off, but also this
content can be overwritten.

http://blog.bluetooth.com/bluetooth-mesh-networking-series-friendship?utm_campaign=mesh&utm_source=bluetooth&utm_medium=web&utm_term=paper&utm_content=paper-mesh-hdwr-pltfrm-link

http://www.bluez.org/release-of-bluez-5-47/

3.0
3.2 Program Memory
Program memory contains the written program after it is burned. Currently, most MCUs use flash as
their program memory media, compared with other program memory media like ROM (Read-Only
Memory). The advantage of flash is that it not only retains its content even while power is off, but
also this content can be overwritten. At present, most Bluetooth enabled MCUs are based on flash
as their program memory.

In the process of selecting a suitable embedded hardware platform, it is common to see flash
memory size from tens of Kbytes to 1 ~ 2 Mbytes. In the application of Bluetooth mesh, the function
of flash program memory is similar to general and common embedded applications. What sets
Bluetooth mesh apart is its ability to provide Over-the-Air (OTA) firmware updates.

OTA is common for Bluetooth LE applications based on GATT. There may be one customized
service and several customized characteristics that are dedicated for OTA. In which case, the
firmware image can be transferred packet by packet through Bluetooth LE connectivity from
smartphones, tablets, or handheld devices to the device that needs to be upgraded. For a Bluetooth
mesh network, it becomes even more important because there could be thousands of nodes in the
network. If a vendor or manufacturer needs to release a new firmware version for a bug fix, adding
new features, or performance improvements, OTA is the best way to perform the firmware upgrade.

back to contents

bluetooth.com | 10

Bootloader Bootloader Bootloader Bootloader Bootloader

Unused Unused Unused

Old FW

New FW

Unused

New FW

Unused

New FW
Ready

Program at

Application
area

Step 1:
Program runs at
application by

old FW

Step 2:
Program gets

into bootloader
and erases

application area

Step 3:
Receives new
FW packet by

packet and
writes into

program memory

Step 4:
Ongoing

Step 5:
New FW is
ready, after

integrity check
run new FW

Figure 3 – Memory map by OTA through bootloader.

https://www.bluetooth.com/

3.0 back to contents

bluetooth.com | 11

For OTA, there are two common methods to achieve:

Method 1: As shown in step 1 in Figure 3, the MCU needs to get into its bootloader. The bootloader
includes the functionality to interact with a peer device like smartphones, tablets, or handheld
devices. The firmware image is fragmented into packets to fit the length restriction of the packet
and send them through Bluetooth LE connectivity to the target device. In steps 2, 3, and 4, the
bootloader receives the fragmented image packet by packet and writes them into the application
area of the flash. When image downloading is completed, and after the integrity check is successful,
the MCU can run the program on the application area of the flash memory. At step 5, the OTA
process is finished.

Method 2: In Figure 4, you can see there is no need to trigger the MCU into the bootloader (Step 1).
The program can stay in the application. The MCU can continue to work as a node in the Bluetooth
mesh network. At the same time, the MCU can build a connection with smartphones, tablets, or
other handheld devices by GATT through Bluetooth LE connectivity to download a new firmware
image and store the image in a New FW storage area (Step 2, 3, and 4). When the downloading
process is complete, you need to make the MCU get into the bootloader to check image integrity.
If the integrity checking is successful, the bootloader can copy the new firmware to the application
area and erase the New FW storage area. In the final step (Step 6), you must make the MCU run the
new firmware.

When you pursue the selection of components for an embedded hardware platform using Bluetooth
mesh, a decision must be made for an OTA method. Then you need to estimate how much flash you
need on the MCU.

https://www.bluetooth.com/

3.0 back to contents

bluetooth.com | 12

Comparing methods 1 and 2, and you can see that:

	 ⋅	 If method 1 is used, the program needs to stay in the bootloader for a while. 			
		 During that time, this node is offline in the Bluetooth mesh network, but 			
		 program memory consumption is more forgiving than with method 2.
	
	 ⋅ 	 With method 2, the program always stays in the application until the integrity 			
		 check and new firmware is copied. The progress of those two operations is quick, and you 	
		 can assume that the node is always online when this kind of OTA is running. The problem is 	
		 that more flash is needed for the new firmware storage area, which means that for every 	
		 single byte in the firmware image, two bytes of flash are needed: one byte for program 	
		 memory and one byte for OTA new firmware storage.

Bootloader

Unused

Old FW

Bootloader

Unused

Old FW

Bootloader

Unused

Old FW

Bootloader

Unused

New FW

Bootloader

UnusedUnusedUnusedUnused Unused

New FW
Ready

New FW

New FW
New FW

Unused

New FW

Program
at

Bootloader

Unused

Old FW

Step 1:
Program runs at
application by

old FW

Step 2:
Application

receives new
FW and writes it

into new FW
storage area

Step 3:
Ongoing

Step 4:
New FW
is ready

Step 5:
Program gets into
bootloader, after
integrity check,
copy new FW to
application area

Step 6:
Erase new FW
storage area

and run
new FW

Application

FW Storage
New FW
Storage

Area

Figure 4 – Memory map by OTA through application.

http://www.bluez.org/release-of-bluez-5-47/

3.0 back to contents

bluetooth.com | 13

3.3 Non-Volatile Memory
Non-volatile memory (NVM), or non-volatile storage, is a type of MCU memory that can retrieve
stored information even after having power cycled or performed different types of resets on the
MCU, such as brown-out, watchdog, and external GPIO pin reset. In a Bluetooth mesh application,
you are likely to use NVM because persistent data needs to be stored permanently.

Last year, we created an article on provisioning that looked at the security keys used in a Bluetooth
mesh network. Those keys are distributed by a provisioner and can be refreshed if the security
keys have been compromised or could be compromised. All those keys should be stored in the
on-chip NVM persistently and can be loaded into the application when the node is power cycled
or reset, even if the firmware is updated, because the node MUST have those keys for network
communication and encryption. Meanwhile, when performing a key refresh, two sets of keys need
to save into the NVM for the key refresh process, in case there is an unpredictable power failure.

With Friendship, regardless of resetting or power cycling the Friend Node or Low Power Node,
each node should know who is who; the Friend Node should know whose message it should buffer
and the Low Power Node should know which Friend Node will poll the message back. So, all the
corresponding information about friendship should be stored persistently. Additionally, important
information like unicast address and model configuration data should be stored into NVM.

There are two common types of NVM on the MCU: flash and EEPROM (electrically erasable
programmable read-only memory). The difference between flash and EEPROM is:

	 ⋅	 On-chip flash is written/erased by page, whereas EEPROM is written/erased by byte

	 ⋅	 On-chip flash is read by page, whereas EEPROM is read by byte

	 ⋅	 Usually, on-chip flash volume is bigger than EEPROM

If you want to design a hand-held provisioner, on-chip flash is preferred because the provisioner
needs to store lot of data for every node in the network. If you want to design a Low Power Node,
EEPROM is enough.

http://www.bluez.org/release-of-bluez-5-47/
http://blog.bluetooth.com/provisioning-a-bluetooth-mesh-network-part-1?utm_campaign=mesh&utm_source=bluetooth&utm_medium=web&utm_term=paper&utm_content=paper-mesh-hdwr-pltfrm-link

4.0
4.0 Lowering Power Consumption

4.1 Lowering Power Consumption
in an Embedded Design
Lowering the power consumption of an embed-
ded system is always an important topic among
engineers and developers and is motivated by
the need to run applications as long as possible
while consuming minimum power, especially in power-constrained systems. Optimal platforms for
developing efficient, single-cell-powered architectures can enable designers to build compact bat-
tery-operated devices at the lowest cost and highest power efficiency. The following tips are useful
for lowering power consumption for common embedded systems.

	 ⋅	 Disable the clock source of unused peripherals like UART, I2C, or SPI
	 ⋅	 All unused pins must be connected to a certain logic level
	 ⋅	 Keep the system clock as low as possible, but only if it can meet the requirements

4.2 Bearer Layer Power Consumption
As you can see in Figure 5, the bearer layer is near
the bottom of Bluetooth mesh architecture. A bearer
is a communications system or protocol stack that is
used to transport data between end points on behalf
of another system or protocol stack. Bluetooth mesh
has two types of bearers: the GATT Bearer and the
Advertising Bearer. For each of these bearers, the
method to lower consumption is different.

The GATT Bearer allows a device that does not

support an Advertising Bearer to communicate
indirectly with nodes of a mesh network, using a
protocol known as the Proxy Protocol (Bluetooth
Specification Mesh Profile V1.0, Section 6). A node
that relays mesh messages between nodes which

use the Advertising Bearer and nodes which use
the GATT Bearer is known as a Proxy Node. The

Proxy Node supports the GATT Bearer and
can establish a connection with the node

that just supports the GATT Bearer.

back to contents

bluetooth.com | 14

Tuning connection parameters
significantly reduce synchronizations...
it’s an ideal method for lowering the
power consumption of the GATT Bearer.

Model Layer

Foundation Model Layer

Access Layer

Upper Transport Layer

Lower Transport Layer

Network Layer

Bearer Layer

Bluetooth Low Energy Core Speci�cation

Figure 5 – Bluetooth mesh system architecture

https://www.bluetooth.com/specifications/mesh-specifications?utm_campaign=mesh&utm_source=bluetooth&utm_medium=web&utm_term=paper&utm_content=paper-mesh-hdwr-pltfrm-link
https://www.bluetooth.com/specifications/mesh-specifications?utm_campaign=mesh&utm_source=bluetooth&utm_medium=web&utm_term=paper&utm_content=paper-mesh-hdwr-pltfrm-link
https://www.bluetooth.com/

4.0 back to contents

bluetooth.com | 15

After connection is established between the Proxy Node and the device that only has a GATT
Bearer, the Proxy Node exposes its mesh proxy service and may add a mesh provisioning service
(all of them are GATT services).

Owing to its connection based, two connection parameters are vital for lowering power
consumption of the GATT Bearer. Figure 6 shows these two parameters: connection interval and
peripheral latency.

Connection Interval is an important parameter for Bluetooth LE connection-based applications and
is defined as the specified duration in which two peer devices each send and receive data from only
the other side. The window where two peer devices send and receive data is known as a connection
event. If there is no application data to be sent or received, the two peer devices exchange empty
link layer data packets to maintain the connection.

Peripheral Latency is a parameter that gives the peripheral device (link layer) the right to skip a
number of connection events, which is defined by connPeripheralLatency, when the connection is
established. This ability gives the peripheral device some flexibility to send or receive only if it needs
to, otherwise connPeripheralLatency timed out.

Tuning connection parameters significantly reduce transceiver activity and is an ideal method for
lowering power consumption. Increasing the connection interval lowers the power consumption for
both devices and reduces the throughput in both directions.

Increasing the peripheral latency reduces power consumption for the peripheral during periods
when the peripheral is idle to send.

The other bearer layer on the Bluetooth mesh network is the Advertising Bearer. In
certain Bluetooth mesh networks, this bearer makes use of Bluetooth GAP advertising

and scanning to receive and broadcast messages from other nodes. Because

Peripheral latency on. Peripheral can skip certain connection events, the number is defined by connPeripheralLatency.

No peripheral latency — peripheral responds with Link Layer empty packets every connection interval.

Peripheral Latency = ON

Peripheral Latency = OFF

Connection
Interval

Central Device

Peripheral Device

C P

C C C CP

C P C P C P C P

C

P

C P

Figure 6 – Connection Interval and Peripheral Latency

http://www.bluez.org/release-of-bluez-5-47/

4.0 back to contents

bluetooth.com | 16

it’s based on GAP advertising and scanning, the aforementioned method for lowering power
consumption over the GATT Bearer is not suitable for this bearer.

4.3 Low Power Feature
Another option for lowering power consumption is to use the low power feature. This allows a
device’s receiver to operate within a Bluetooth mesh network at significantly reduced duty cycles. A
node that supports the low power feature, and has the low power feature enabled, is a Low Power
Node.

4.4 Low Power Node Transition
From Figure 7, you can see there are several steps required to reduce a receiver’s activity and put
the core processor of the MCU into sleep mode. In runtime, if a Low Power Node’s task scheduler
is idle, it is time for it to go into sleep mode to save power. The Low Power Node then puts the
receiver in standby mode to save power. In standby mode, the receiver consumes little power, but
can still wake up rapidly. Then, the Low Power Node:
	 ⋅	 Disables all unused peripherals like UART, PWM, SPI, or I2C during sleep mode
	 ⋅	 Switches the clock source from high frequency, like external crystal oscillator with PPL, to 	
		 low frequency, such as the internal RC oscillator/32KHz crystal oscillator, which can make 	
		 the MCU operate at a low speed for greater power savings
	 ⋅	 Enables corresponding interrupt sources in order to wake up the Low Power Node by 		
		 interrupting events
	 ⋅	 Makes the core processor go into sleep mode, at which time the Low Power Node goes into 	
		 a power-saving state
The Low Power Node can also be awakened by an external interrupt event like a button click, sensor
reading alert, vibration detection, or interval timer fired because it needs to send something to a
Friend Node in case friendship is terminated. From Figure 7, you can also see there are several steps
required after waking up the Low Power Node.
	 ⋅	 During any interrupt events, the core processor is awakened and the system clock is 		
		 switched from low frequency to high frequency to make sure there is enough computing 	
		 resource for task processing
	 ⋅	 When the system clock is stabilizing, the Low Power Node enables
		 corresponding peripherals
	 ⋅	 Then, it makes the receiver switch from standby mode to running mode

http://www.bluez.org/release-of-bluez-5-47/

4.0 back to contents

bluetooth.com | 17

4.5 Low Power Considerations
When you select a Bluetooth mesh solution for an Advertising Bearer, and it needs to use the low
power feature, you should be aware of:
	 ⋅	 Which sleep mode is the most suitable for your application, since modern MCUs have 		
		 multiple sleep modes, each with different power consumptions, computing capabilities, and 	
		 force-quit triggers
	 ⋅	 Types of interrupt sources that can wake the core processor from the sleep mode 		
		 you selected
	 ⋅	 How long it takes to wake the core processor and receiver if the application is time sensitive
	 ⋅	 The duration it will wait for clock source stabilizing from sleep mode
	 ⋅	 Selecting a suitable clock source when the application is in low power mode		
		 (e.g. interval RC oscillator or external 32KHz crystal oscillator)

Current

Time

Task scheduler idle,
enable transceiver
standby

Core, peripherals,
and clock into
sleep mode

Interrupt event,
clock, core, and

peripherals wakeup

Clock source
stabilizing, wake

transceiver up

System in runtime
for task process

Figure 7 – The procedure of the Low Power Node.

http://www.bluez.org/release-of-bluez-5-47/

5.0 back to contents

bluetooth.com | 18

5.0 Building a Solid Knowledge Base
It is important to have a good understanding of the available technology before initiating a project
that takes advantage of all that a Bluetooth mesh network offers. Now that you know what to look
for in a suitable hardware platform, you should have the foundation you need to start working with
a Bluetooth mesh network. By selecting the right chip/module; understanding key coding, data
retention, and OTA factors; and knowing how to lower power consumption across your network,
you will be better positioned to select the most appropriate Bluetooth mesh hardware platform that
best meets your specified needs.

Once you have selected a chip/module, you can work with that silicon vendor to get the datasheet,
recommended development environment, sample source code, reference design, and application
note you need to proceed. You can also contact the Bluetooth SIG for Help & Support should you
need any assistance.

To learn more about Bluetooth mesh, check out the Bluetooth Mesh Networking Specifications.
Once you have selected a chip/module, you can work with that silicon vendor to get the datasheet,
recommended development environment, sample source code, reference design, and application
note you need to proceed. You can also contact the Bluetooth SIG for Help & Support should you
need any assistance.

To learn more about Bluetooth mesh, check out the Bluetooth Mesh Networking Specifications.

http://www.bluez.org/release-of-bluez-5-47/
https://bluetooth.service-now.com/ess/

https://www.bluetooth.com/specifications/mesh-specifications?utm_campaign=mesh&utm_source=bluetooth&utm_medium=web&utm_term=paper&utm_content=paper-mesh-hdwr-pltfrm-link

https://bluetooth.service-now.com/ess/

https://www.bluetooth.com/specifications/mesh-specifications?utm_campaign=mesh&utm_source=bluetooth&utm_medium=web&utm_term=paper&utm_content=paper-mesh-hdwr-pltfrm-link

