Bluetooth® technology is all around us:  electronic beacons guiding firefighters through buildings; wearable medical devices sending patient’s biological data to a physician’s tablets; manufacturing equipment monitoring in 400,000 square foot warehouses; and more.  Bluetooth technology is growing and is expected to have an install base of over 48 billion by 2021 (per ABI Internet of Everything Market Tracker).

So how does Bluetooth work?  Bluetooth low energy has 40 physical channels in the 2.4GHz ISM band, each separated by 2MHz.  Bluetooth defines two transmissions types: data and advertising transmissions.  As such, 3 of these 40 channels are dedicated to advertising and 37 to data. 

Whether it’s a beacon (transmitting location, weather, or other data) or a fitness watch making a long term connection with a host (tablet or phone), all peripheral devices, at least initially, begin in advertising mode.

Advertising allows devices to broadcast information defining their intentions.

So how does Bluetooth® advertise?

For ease of use, Bluetooth defines a single packet format for both advertising and data transmissions.  This packet consist of four components: preamble (1 octet), access address (4 octets), Protocol Data Unit – PDU (2-257 octets), and Cyclic Redundancy Check – CRC (3 octets); see Figure 1A.  

Link Layer Single Packet format and breakout of Advertising PDU

The PDU segment is important, as it defines whether this packet is an advertising or data packet.  For our discussion, we’ll focus on advertising PDUs (Figure 1B).

The Advertising PDU packet (Figure 2A) contains a 16 bit header and a variable size payload.

Advertising PDU header, specifically PDU type and Length.

The advertising header defines 6 segments.  We’ll focus on the Length and PDU Type fields/segments (Figure 2B).  The Length field is 6 bits and defines the size of the payload, i.e. how much stuff we can advertise (Figure 2A).  The Length may be between 6 – 37 octets and is defined by PDU Type

So great, we know we’re advertising, and have “x” number of octets for payload, but why are we advertising?  This is where the PDU Type comes in. In Bluetooth® low energy there are two reasons to advertise/broadcast:

  • To establish a bi-direction connection between devices (such as a smart watch to a phone). 
  • Or to broadcast information without ever connecting to another device, such as a beacon transmitting data in a museum telling you there is a 500 year old mummified body 5 feet behind you. 

So whether it’s the smart watch or a mummy vying for attention, we developers focus on 4 PDU Types (Figure 2B): 

  • ADV_IND
    • Known as Advertising Indications (ADV_IND), where a peripheral device requests connection to any central device (i.e., not directed at a particular central device). 
    • Example:  A smart watch requesting connection to any central device.
  • ADV_DIRECT_IND
    • Similar to ADV_IND, yet the connection request is directed at a specific central device. 
    • Example: A smart watch requesting connection to a specific central device.
  • ADV_NONCONN_IND
    • Non connectable devices, advertising information to any listening device. 
    • Example:  Beacons in museums defining proximity to specific exhibits.
  • ADV_SCAN_IND
    • Similar to ADV_NONCONN_IND, with the option additional information via scan responses. 
    • Example:  A warehouse pallet beacon allowing a central device to request additional information about the pallet. 

So, when a long-term connection is desired, the PDU Type is set to either ADV_IND or ADV_DIRECT_IND, depending on whether the peripheral is advertising to any device or a specific device.  

And when broadcasting general data without establishing a long term connection, ADV_NONCONN_IND or ADV_SCAN_IND is the PDU Type of choice.  Typical beacons would use ADV_NONCONN_IND, and a peripheral allowing access to more information such as our warehouse pallet, ADV_SCAN_IND may be a better choice. 

Whether requesting a long term connection or broadcasting as an electronic beacon, it all starts with advertising. 

In our next post, we’ll discuss extended advertising features released in Bluetooth 5

FEATURED DOWNLOAD

Enhancing Bluetooth Location Services with Direction Finding

A new Bluetooth direction finding feature allows devices to determine the direction of a Bluetooth signal, thereby enabling the development of Bluetooth proximity solutions that can understand device direction as well as Bluetooth positioning systems that can achieve down to centimeter-level location accuracy.

INSTANT DOWNLOAD

Bluetooth Developer Journey

As a leading player in the semiconductor industry committed to the development of cutting-edge…

Generic Health Sensor Design and Implementation Guide

The Generic Health Sensor (GHS) Design and Implementation Guide guides implementers of health sensor…

Doom running on Silicon Labs & Sparkfun Microcontrollers: A Quick Look

Doom has recently reached its 30th anniversary, yet it remains a masterpiece and a…

Auracast Simple Transmitter Best Practices Guide

This paper provides a set of clear, concise, and useful recommendations for product makers interested in building Auracast transmitter products.

5.7 km of Bluetooth® Range

40 km from Irvine, California gets you to beautiful Newport Beach Pier, and 5.7…

Synthesize and Transmit Audio Using LE Audio

The application is assembled as a sound-generating device, the synthesizer, and a receiving headphone.…

Unveiling the Truth: Debunking Bluetooth’s Biggest Myth

Bluetooth Low Energy was designed to considerably reduce power consumption and cost while maintaining…

Bluetooth® Mesh Feature Enhancements Summary

This paper summarizes the recent Bluetooth® Mesh feature enhancements and provides references to other…

The Latest in HADM with Bluetooth LE

HADM, or high accuracy distance measurement using Bluetooth does exactly what it says –…

Mr. Beacon Podcast: Snapdragon Sound with Mike Canevaro

This episode of the Mr. Beacon Podcast explores the revolutionary world of Bluetooth audio.…

Top 10 Auracast™ Resources

It’s been almost a year since the Bluetooth Special Interest Group (SIG) released Auracast™…

Features and Benefits of Bluetooth Mesh 1.1 for Wireless Mesh Networking

Commercial and industrial applications like lighting require large-scale, low-power device networks where thousands of…

The Bluetooth® Low Energy Primer

Are you new to Bluetooth Low Energy? Learn about its constituent parts, features, and how it works.

Bluetooth® Technology for Linux Developers

Learn how to use the interprocess communication system D-Bus and the BlueZ APIs to create Bluetooth applications for Linux computers.

Designing and Developing Bluetooth® Internet Gateways

Learn about Bluetooth® internet gateways, how to make them secure and scalable, and design and implement your own...

 Get Help